

Oracle® Services for Microsoft Transaction Server
Developer's Guide

11g Release 2 (11.2) for Microsoft Windows

E12247-02

April 2010

Oracle Services for Microsoft Transaction Server Developer's Guide, 11g Release 2 (11.2) for Microsoft
Windows

E12247-02

Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved.

Contributing Authors: Janis Greenberg, Patricia Huey, Mark Kennedy, Roza Leyderman, Janelle Simmons

Contributors: Alex Keh, Valarie Moore, Vivek Raja, Eric Wang, Yong Hu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents ... viii
Conventions ... viii

What's New in Oracle Services for Microsoft Transaction Server xi

Oracle Database 11g Release 2 (11.2) New Features... xi

1 Using Microsoft Transaction Server with Oracle Database

Microsoft Transaction Server Overview .. 1-1
Microsoft Transaction Server and Oracle Integration Overview .. 1-1

Oracle Services for Microsoft Transaction Server Support for DTC... 1-2
Distributed Transactions on Real Application Clusters (Oracle RAC) 1-2
Promotable Local Transactions .. 1-2
Read-Committed and Serializable Transactions ... 1-3

Getting Started with Microsoft Transaction Server and Oracle.. 1-3

2 Installing and Migrating Oracle Products

Installing Oracle Services for Microsoft Transaction Server ... 2-1
Installation Requirements for Microsoft Transaction Server .. 2-1

Oracle Products ... 2-1
Non-Oracle Products .. 2-2

Installation Requirements for Oracle Database ... 2-2
Oracle Products ... 2-2

3 Managing Recovery Scenarios

Microsoft Transaction Server Configuration Requirements ... 3-1
Microsoft Transaction Server Transaction Recovery Overview .. 3-1
Scheduling Automatic Microsoft Transaction Server Transaction Recovery 3-2

Creating an Access Control List (ACL)... 3-2
Configuring Automatic Transaction Recovery.. 3-3

Setting and Starting Up Database Job-Queue Processes... 3-3
Creating and Scheduling Automatic Transaction Recovery ... 3-4

iv

Viewing Microsoft Transaction Server In-Doubt Transactions... 3-6
Modifying Registry Values for Oracle Fail Safe Configurations.. 3-6

4 Programming with Microsoft Transaction Server and an Oracle Database

COM Component Integration in a Transaction.. 4-1
Microsoft Transaction Server Application Development... 4-3

Microsoft Transaction Server Component Registration... 4-4
Types of Registration Components .. 4-4
Registration of Components.. 4-4

Microsoft Transaction Server-Coordinated Component Transaction .. 4-4
Microsoft DTC-Coordinated Component Transaction... 4-5

OCI Integration with Microsoft Transaction Server.. 4-6
Integrating COM Components ... 4-7

COM Components Running in an MTS-Coordinated Transaction..................................... 4-7
Non-Transactional COM Components Running with OCI Connection Pooling.............. 4-7
COM Components Using MS DTC and OCI Connection Pooling 4-8
COM Components Using MS DTC and Nonpooling OCI Connection 4-8

Using OCI Functions ... 4-8
OraMTSSvcGet() .. 4-9
OraMTSSvcRel() ... 4-11
OraMTSSvcEnlist() ... 4-11
OraMTSSvcEnlistEx() ... 4-12
OraMTSEnlCtxGet() ... 4-13
OraMTSEnlCtxRel() .. 4-14
OraMTSJoinTxn() ... 4-15
OraMTSTransTest() .. 4-15
OraMTSOCIErrGet() .. 4-16

ODBC Integration with Microsoft Transaction Server Overview ... 4-16
Setting the Connection Attribute .. 4-17
Using Oracle ODBC Driver ... 4-17
Using Microsoft Oracle ODBC Driver ... 4-18

5 Tuning Microsoft Transaction Server Performance

Improving Microsoft Transaction Server Application Performance.. 5-1
Managing Microsoft Transaction Server Connections.. 5-1

Connection Pooling Registry Parameters ... 5-1
Increasing the Transaction Timeout Parameter ... 5-3
Changing Initialization Parameter Settings.. 5-3
Additional Parameters... 5-4
Starting MSDTC ... 5-4

6 Troubleshooting Oracle Microsoft Transaction Server

Tracking OraMTS Performance... 6-1
Correcting Oracle Net Changes that Impact Connection Pooling .. 6-2
Designing an Application that Uses Multiple Databases .. 6-2
Working with Different Types of Connection Pooling... 6-4

v

Working with In-Doubt Transactions... 6-4
Dropping the Microsoft Transaction Server Administrative User Account 6-4

Glossary

Index

vi

vii

Preface

This manual explains how to install, configure, use, and administer Oracle Services for
Microsoft Transaction Server that apply to operating systems. It covers the features of
Oracle Database software that apply to the Windows 2000, Windows XP, and Windows
Server 2003 operating systems.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This guide is intended for anyone who performs the following tasks:

■ Uses component object model (COM) components with Microsoft Transaction
Server

■ Registers COM components as transactional and has Microsoft Transaction Server
control the transaction

■ Uses client-side connection pooling in Microsoft Transaction Server

■ Uses .NET applications with Oracle Services for Microsoft Transaction Server to
access Oracle Database instances.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an

viii

otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see these Oracle resources:

■ Oracle Database Reference

■ Oracle Provider for OLE DB Developer's Guide

■ Oracle Objects for OLE Developer's Guide

■ Oracle Data Provider for .NET Developer's Guide

■ Oracle Net Services Administrator's Guide

■ Oracle Database Platform Guide for Windows

For information about Oracle error messages, see Oracle Database Error Messages.
Oracle error message documentation is available only in HTML. If you only have
access to the Oracle Documentation CD, you can browse the error messages by range.
Once you find the specific range, use your browser's "find in page" feature to locate the
specific message. When connected to the Internet, you can search for a specific error
message using the error message search feature of the Oracle online documentation.

Many of the examples in this book use the sample schemas of the seed database, which
is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas
for information on how these schemas were created and how you can use them
yourself.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

Conventions
The following text conventions are used in this document:

ix

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

x

xi

What's New in Oracle Services for Microsoft
Transaction Server

This section describes new features of Oracle Database 11g Release 2 (11.2) and
provides pointers to additional information.

The following sections describe the new features in Oracle Services for Microsoft
Transaction Server.

■ Oracle Database 11g Release 2 (11.2) New Features

Oracle Database 11g Release 2 (11.2) New Features
■ Support for Promotable Single Phase Enlistment

Oracle database now allows all transactions to remain local until more than one
database is brought into the transaction, at which point, they are promoted to
distributed transactions.

■ Transparent Distributed Transactions on Real Applications Clusters

The database now redirects all the branches of a distributed transaction to a single
Oracle RAC instance automatically.

See Also: "Promotable Local Transactions" on page 1-2

See Also: "Distributed Transactions on Real Application Clusters
(Oracle RAC)" on page 1-2

xii

1

Using Microsoft Transaction Server with Oracle Database 1-1

1 Using Microsoft Transaction Server
with Oracle Database

This chapter describes Microsoft Transaction Server and Oracle Database integration.

This chapter contains these topics:

■ Microsoft Transaction Server Overview

■ Microsoft Transaction Server and Oracle Integration Overview

■ Getting Started with Microsoft Transaction Server and Oracle

Microsoft Transaction Server Overview
Microsoft Transaction Server is a proprietary component object model (COM)
transaction processing system that runs on an Internet or network server. Microsoft
Transaction Server deploys and manages application and database transaction
requests on behalf of a client computer. Microsoft Transaction Server provides:

■ ActiveX/distributed component object model (DCOM) programming model to
develop distributed applications and a runtime environment in which to deploy
these applications.

■ Atomicity, Consistency, Isolation, and Durability (ACID) properties for
components in transactions.

■ Access to performance-enhancing features such as component caching and
database connection pooling.

Microsoft Transaction Server is a component of the three-tiered, server-centric
architecture model. This model lets you separate the presentation, business logic, and
data elements of applications onto different computers connected in a network.
Microsoft Transaction Server functionality is also implemented in COM+ and
Enterprise Services. Oracle Services for Microsoft Transaction Server, or OraMTS,
support Microsoft Transaction Server, COM+, and Enterprise Services.

Microsoft Transaction Server and Oracle Integration Overview
Without any special integration, you can deploy applications that were created using
Win32, Win64, COM, or Microsoft .NET with a Microsoft Transaction Server that
connects to an Oracle Database. To use either of the following features, however, you
must install Oracle Services for Microsoft Transaction Server (OraMTS):

See Also: Microsoft documentation for additional information about
Microsoft Transaction Server

Microsoft Transaction Server and Oracle Integration Overview

1-2 Oracle Services for Microsoft Transaction Server Developer's Guide

■ Register the Win32, Win64, COM or .NET application as transactional and have
Microsoft Transaction Server control the transaction. You can do this by using the
Properties dialog box of the component in the Microsoft Management Console
Explorer.

■ Use client-side connection pooling in Microsoft Transaction Server.

After you have installed Oracle Services for Microsoft Transaction Server, an Oracle
MTS Recovery Service is also automatically installed on the same computer. The
Oracle MTS Recovery Service helps in the recovery of in-doubt transactions left in
Oracle Database instances that originated from this computer. On each connected
database:

■ Create the Microsoft Transaction Server administrator user account.

■ Schedule a database-level transaction recovery job.

This enables the database to participate in Microsoft Transaction Server-started
transactions.

Create the COM component with any of the following Oracle products:

■ Oracle Data Provider for .NET (ODP.NET).

■ Oracle Open Database Connectivity (ODBC) Driver

■ Oracle Provider for OLE DB

■ Oracle Call Interface (OCI)

■ Oracle Objects for OLE (OO4O)

Oracle Services for Microsoft Transaction Server Support for DTC
Oracle Services for Microsoft Transaction Server works with Microsoft Distributed
Transaction Coordinator (DTC), which is part of the Enterprise Services component of
.NET. DTC implements a two-phase commit protocol that makes sure that the
transaction outcome is consistent across all data resources involved in a transaction.

Distributed Transactions on Real Application Clusters (Oracle RAC)
With Oracle Database Release 11.1, the database now redirect all the branches of a
distributed transaction to a single Oracle RAC instance automatically. Previously
developers needed to manually manage this process, individually redirecting all the
branches to a single Oracle RAC instance.

Promotable Local Transactions
Promotable local transactions allow all transactions to remain local until more than
one database is brought into the transaction, at which point, they are promoted to
distributed transactions.

The flexibility of the promotable transaction feature ensures more efficient resource
usage for transactional applications. Distributed transactions require significant
overhead versus local transactions. Therefore, local transactions are preferred if only
one database is used. At design-time, it may not be known when transactions are local
or distributed. Prior to this feature, developers always had to use distributed

See Also: Oracle Database Oracle Real Application Clusters
Administration and Deployment Guide to learn more about distributed
transactions in Real Application Clusters.

Getting Started with Microsoft Transaction Server and Oracle

Using Microsoft Transaction Server with Oracle Database 1-3

transactions, even if local ones occurred most of the time, leading to unnecessary
resource usage.

This feature is supported with Oracle Database 11g Release 1 and higher. Earlier
database versions and other resource managers can participate in a promotable
transaction as long as the first connection is to an Oracle Database 11g Release 1 data
source or higher.

Read-Committed and Serializable Transactions
Oracle Services for Microsoft Transaction Server supports distributed transactions set
to a serializable or read-committed isolation level.

Getting Started with Microsoft Transaction Server and Oracle
You are now ready to use Microsoft Transaction Server with a database. To get started
quickly, follow these steps:

1. Install the Oracle and Microsoft products required for Microsoft Transaction
Server and database integration.

See Chapter 2, "Installing and Migrating Oracle Products".

2. Create the Microsoft Transaction Server administrator user account.

See Chapter 3, "Managing Recovery Scenarios".

3. Schedule a Microsoft Transaction Server transaction recovery job.

See Chapter 3, "Managing Recovery Scenarios".

4. Create Microsoft Transaction Server-hosted applications.

See Chapter 4, "Programming with Microsoft Transaction Server and an Oracle
Database" for instructions on using OCI, OO4O, Oracle ODBC Driver, or Oracle
Provider for OLE DB with COM-based applications.

5. Learn about using Microsoft Transaction Server on the different Windows
operating systems.

See Also: Oracle Data Provider for .NET Developer's Guide for more
information on System.Transactions support

Getting Started with Microsoft Transaction Server and Oracle

1-4 Oracle Services for Microsoft Transaction Server Developer's Guide

2

Installing and Migrating Oracle Products 2-1

2 Installing and Migrating Oracle Products

This chapter describes installation and migration requirements for the Microsoft
Transaction Server and Oracle Database environment.

This chapter contains these topics:

■ Installing Oracle Services for Microsoft Transaction Server

Installing Oracle Services for Microsoft Transaction Server
You can install OraMTS by choosing the Custom installation type when you install
Oracle Database.

This section describes the Oracle and non-Oracle products you must install for
OraMTS. Additional installation requirements include:

■ Only one Oracle MTS Recovery Service exists on each computer.

■ For Oracle Data Provider for .NET (ODP.NET) cluster configurations (or any
failover configuration), install Microsoft Transaction Server on the node running
the Microsoft Distributed Transaction Coordinator (MS DTC) component. This
ensures that the Oracle MTS Recovery Service migrates with the client application
during failover. You can configure this when scheduling recovery transactions.

Installation Requirements for Microsoft Transaction Server
The Windows computer where Microsoft Transaction Server is installed has the
following product requirements:

Oracle Products
■ OraMTS

■ Oracle Database Client

■ A data access driver that uses Oracle Services for MTS, such as:

– Oracle Data Provider for .NET (ODP.NET)

– Oracle Objects for OLE (OO4O)

– Oracle Open Database Connectivity (ODBC) Driver

– Oracle Provider for OLE DB

– Oracle Call Interface (OCI)

Installing Oracle Services for Microsoft Transaction Server

2-2 Oracle Services for Microsoft Transaction Server Developer's Guide

Non-Oracle Products
■ Windows operating system

■ Microsoft Distributed Transaction Coordinator, which is part of COM+, Enterprise
Services, or Microsoft Transaction Server

Installation Requirements for Oracle Database
The computer where Oracle Database is installed has the following product
requirements:

Oracle Products
■ Oracle Database Server

■ SQL*Plus

Notes:

■ OO4O, Oracle ODBC Driver, ODP.NET, Oracle Provider for OLE
DB, and OCI are only required if you are building or using
components with which they are required.

■ Depending on the installation, you are prompted to enter the port
number on which the Oracle MTS Recovery Service will listen for
requests to resolve in-doubt transactions

3

Managing Recovery Scenarios 3-1

3 Managing Recovery Scenarios

This chapter describes how to create and schedule Microsoft Transaction
Server-related Oracle transaction recovery.

This chapter contains these topics:

■ Microsoft Transaction Server Configuration Requirements

■ Microsoft Transaction Server Transaction Recovery Overview

■ Scheduling Automatic Microsoft Transaction Server Transaction Recovery

■ Viewing Microsoft Transaction Server In-Doubt Transactions

■ Modifying Registry Values for Oracle Fail Safe Configurations

Microsoft Transaction Server Configuration Requirements
You must configure the Microsoft Transaction Server and Oracle Database
environments after installing or migrating Oracle Services for Microsoft Transaction
Server (OraMTS).

Configuration is not required on the Windows computer if a Microsoft Transaction
Server is installed on a computer.

To configure the Microsoft Transaction Server, perform the following tasks on the
computer where the Oracle Database is installed:

1. Run the oramtsadmin.sql script against the database to create the Microsoft
Transaction Server administrative user account (the default username is mtssys).

2. Schedule automatic transaction recovery.

See "Scheduling Automatic Microsoft Transaction Server Transaction Recovery" on
page 3-2

3. If you have an Oracle Fail Safe configuration, modify the registry values before or
after running the oramtsadmin.sql script.

See "Modifying Registry Values for Oracle Fail Safe Configurations" on page 3-6.

Microsoft Transaction Server Transaction Recovery Overview
Distributed transaction capabilities are required to use Microsoft Transaction Server
with Oracle database. Microsoft Transaction Server-related Oracle transactions become
in-doubt transactions when any of the following fail:

■ Microsoft Transaction Server application

Scheduling Automatic Microsoft Transaction Server Transaction Recovery

3-2 Oracle Services for Microsoft Transaction Server Developer's Guide

■ Network

■ Microsoft Distributed Transaction Coordinator (MS DTC)

An Oracle MTS Recovery Service resolves in-doubt transactions on the computer that
started the failed transaction. An Oracle MTS Recovery Service is automatically
installed with Oracle Services For Microsoft Transaction Server. Only one Oracle MTS
Recovery Service can be installed for each computer. A scheduled recovery job on each
Microsoft Transaction Server-enabled database permits the Oracle MTS Recovery
Service to resolve in-doubt transactions.

The Oracle MTS Recovery Service resolves an in-doubt Microsoft Transaction Server
transaction in the following order:

1. The DBMS recovery job detects an in-doubt MTS-related transaction.

2. The DBMS recovery job extracts the recovery service's endpoint address from the
XID of the in-doubt transaction and requests the recovery service for the outcome
of the MTS/MS DTC transaction.

3. The recovery service requests its MS DTC for transaction outcome.

4. The recovery service reports transaction outcome to the DBMS job process.

5. The DBMS recovery job commits or terminates the in-doubt transaction.

Scheduling Automatic Microsoft Transaction Server Transaction Recovery
OraMTS uses server-based recovery to resolve in-doubt transactions originated by
MSDTC. To do this, the OraMTS administrator must be able to access the Windows
middle-tier node through UTL_HTTP. oramtsadmin.sql grants execute privileges
on UTL_HTTP to the OraMTS administrator, as shown in "Configuring Automatic
Transaction Recovery" on page 3-3

Creating an Access Control List (ACL)
For Oracle database version 11g and later, the DBA must create an access control list
(ACL) that grants the OraMTS administrator the privilege to make out-bound HTTP
connections. Example 3–1 demonstrates this:

Example 3–1 Creating an ACL List and Adding OraMTS Administrator to it

BEGIN
 -- Create the new ACL, naming it "OraMTSadmin.xml", with a description.
 -- This provides the OraMTS administrative user e.g. MTSADMIN user FOO
 -- the privilege to connect
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL('OraMTSadmin.xml',
 'Allow usage to the UTL network packages',
 'FOO', TRUE, 'connect');
 -- Now grant privilege to resolve DNS names to the OraMTS administrative user
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE('OraMTSadmin.xml' ,
 'FOO', TRUE,'resolve');
 -- Specify which hosts this ACL applies to, in this case we are allowing
 -- access to all hosts. if one knew the list of all Windows middle-tier,
 -- these could be added one by one.
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL('OraMTSadmin.xml','*');

Note: Starting with Oracle version 11g, the DBA needs to create an
access control list (ACL) as shown in "Creating an Access Control List
(ACL)" on page 3-2.

Scheduling Automatic Microsoft Transaction Server Transaction Recovery

Managing Recovery Scenarios 3-3

 END;

Configuring Automatic Transaction Recovery
Automatic transaction recovery is performed by scheduling a database job. A database
job for in-doubt transactions must be scheduled for each database participating in
Microsoft Transaction Server transactions.

Transaction recovery is configured by running the oramtsadmin.sql script, which
triggers utl_oramts.sql and prvtoramts.plb scripts to create the PL/SQL
package utl_oramts. The database view oramts_2pc_pending is also created to
show in-doubt transactions related to Microsoft Transaction Server transactions.

The oramtsadmin.sql script:

■ Creates the Microsoft Transaction Server administrator user account.

■ Automatically schedules database jobs for transaction recovery every one minute.

When the database job is run, it checks for unresolved global transactions in the
database that are related to Microsoft Transaction Server. Information in the
transaction identifiers (XIDs) of the in-doubt transactions identifies the computer
on which the transaction was started. The Oracle MTS Recovery Service on that
computer resolves the transaction.

■ Schedules post-recovery cleanup every half hour.

Schedule automatic transaction recovery in the database by performing these tasks:

■ Setting and Starting Up Database Job-Queue Processes

■ Creating and Scheduling Automatic Transaction Recovery

Setting and Starting Up Database Job-Queue Processes
The JOB_QUEUE_PROCESSES initialization parameter specifies the number of job
queue processes started in an instance.

To set and start up job-queue processes:

1. Ensure that you have SYSDBA privileges.

2. Go to the computer on which the Oracle Database is installed.

3. Start SQL*Plus:

C:\> sqlplus /NOLOG

4. Connect to the database as SYSDBA:

SQL> CONNECT / AS SYSDBA

5. Set the JOB_QUEUE_PROCESSES initialization parameter:

JOB_QUEUE_PROCESSES = 1

The default value for this parameter is 0. Set this parameter to a value greater than
1 if there are many destinations to which to propagate the messages.

6. Shut down the Oracle Database:

SQL> SHUTDOWN

7. Restart the Oracle Database:

Scheduling Automatic Microsoft Transaction Server Transaction Recovery

3-4 Oracle Services for Microsoft Transaction Server Developer's Guide

SQL> STARTUP

8. Exit SQL*Plus:

SQL> EXIT

Creating and Scheduling Automatic Transaction Recovery
The oramtsadmin.sql script creates the Microsoft Transaction Server administrator
user account with the default username mtssys. The Microsoft Transaction Server
transaction recovery jobs run under the administrator user account.

The oramtsadmin.sql script runs the utl_oramts.sql script to grant the
following privileges and roles to the administrator user account:

■ CREATE SESSION role

■ SELECT_CATALOG_ROLE role

■ FORCE_ANY_TRANSACTION privilege

■ DBMS_JOBS package, on which EXECUTE privileges are granted

■ DBMS_TRANSACTION package, on which EXECUTE privileges are granted

To create and schedule automatic transaction recovery:

1. Ensure that you have SYSDBA privileges.

2. Log on to the computer where the Oracle Database is installed.

3. Start SQL*Plus:

C:\> sqlplus /NOLOG

4. Connect to the database as SYSDBA:

SQL> CONNECT / AS SYSDBA

5. Run the oramtsadmin.sql script:

SQL> @ORACLE_BASE\ORACLE_HOME\oramts\admin\oramtsadmin.sql;

You are prompted for the Microsoft Transaction Server administrator username
and password. You can accept the default username of mtssys and password of
mtssys, or change them.

6. If you did change the password in step 5, you can change it using this script:

SQL> ALTER USER USERNAME IDENTIFIED BY new_password;

To change the username after completing this task, drop the user, rerun the
oramtsadmin.sql script, and specify a different username when prompted.

7. Exit SQL*Plus:

SQL> EXIT

A single PL/SQL package, utl_oramts, is created in the Microsoft Transaction Server
administrator's schema. utl_oramts exposes these public procedures and creates this
view:

■ utl_oramts.show_indoubt Procedure

■ utl_oramts.recover_automatic Procedure

■ utl_oramts.forget_RMs Procedure

Scheduling Automatic Microsoft Transaction Server Transaction Recovery

Managing Recovery Scenarios 3-5

■ oramts_2pc_pending View

utl_oramts.show_indoubt Procedure Use this procedure to view Microsoft Transaction
Server in-doubt transactions in the database. This procedure uses the dbms_output
package to display results.

Description This procedure requires SERVEROUTPUT set to ON.

SQL> SET SERVEROUTPUT ON

SQL> EXECUTE utl_oramts.show_indoubt;

The following information appears:

===
currently indoubt transactions
===
formatid : 21255235
gtrid : C2229A505904974D81FB7316B147325900000000
bqual : 5BAB6A6B55CD294AA20335839110829C0100000000901944700050
local txid : 142.11.202
tx state : prepared
protocol : HTTP
endpoint : middletier-1@foo.com:2030
===
formatid : 21255235
gtrid : 259DF9C8DFC5574F8876F0DF4E15CCAD00000000
bqual : 2C8DCED5B9816244BA2B73CC013EEB870100000000901944700050
local txid : 2.18.185
tx state : prepared
protocol : HTTP
endpoint : middletier-2@foo.com:2030

utl_oramts.recover_automatic Procedure This procedure is run by the transaction recovery
job. An automatic database job is scheduled for utl_oramts.recover_automatic.
When the job is run, it checks for unresolved global transactions in the database that
are related to Microsoft Transaction Server. Information in the XIDs of the in-doubt
transactions identifies the computer on which the transaction started. The Oracle MTS
Recovery Service is contacted and resolves the transactions.

utl_oramts.forget_RMs Procedure Use this procedure to request the transaction manager
(MS DTC) to forget resolved transactions. This procedure is run by the post-recovery
cleanup job.

oramts_2pc_pending View The view oramts_2pc_pending is created by executing
oramtsadmin.sql. oramts_2pc_pending shows in-doubt transactions in the
database. This view consists of the following columns:

Formatid This is the formatid of the global transaction in the database.

global_transaction_id This is the transaction identifier of the Oracle global
transaction corresponding to the Microsoft Transaction Server transaction. In fact, this
is the globally unique identifier (GUID) of the Microsoft Transaction Server
transaction.

branch_id This shows the branch identifier of the Oracle transaction. A single
Microsoft Transaction Server transaction can have multiple Oracle global transactions.
This depends on the number of Microsoft Transaction Server/COM+ components that

Viewing Microsoft Transaction Server In-Doubt Transactions

3-6 Oracle Services for Microsoft Transaction Server Developer's Guide

span the same Microsoft Transaction Server transaction. All these transactions have the
small global transaction identifier, but different branch identifiers.

local_tx_id A local Oracle transaction corresponds to each Microsoft Transaction
Server transaction. This column shows the identifier corresponding to this local
transaction.

state This shows the state of the transaction: pending, heuristically committed,
heuristically terminated, and so on.

protocol This is the protocol that the transaction recovery job in the database uses to
communicate with the Oracle MTS Recovery Service.

endpoint This is the endpoint of the Windows computer on which the Microsoft
Transaction Server transaction originated. For HTTP connections, this translates to a
hostname and port number.

Viewing Microsoft Transaction Server In-Doubt Transactions
To view Microsoft Transaction Server–related in-doubt transactions in the database,
use SQL*Plus to query the view oramts_2pc_pending:

1. Start SQL*Plus with the Microsoft Transaction Server administrator user account:

C:\> sqlplus mtsadmin_user/ mtsadmin_password

2. Enter the following command:

SQL> SELECT * FROM oramts_2pc_pending;

This displays the computer on which the in-doubt transaction originated.

Modifying Registry Values for Oracle Fail Safe Configurations
In typical configurations, the MS DTC and Oracle MTS Recovery Service run on the
same computer. This ensures that the required information for transaction recovery is
available to the Oracle-Microsoft Transaction Server integration layer.

In configurations where the Microsoft Transaction Server application is part of a
Windows cluster (for example, the application can fail over to another node or host in
the cluster), the MS DTC runs as a cluster-wide resource. All cluster nodes use a single
instance of the MS DTC running on any cluster node.

If you have an Oracle Fail Safe configuration, make sure the following registry
information is replicated on all nodes in the cluster participating in Microsoft
Transaction Server transactions:

To modify registry values for Oracle Fail Safe configurations:

1. Go to the computer on which the MS DTC and Oracle MTS Recovery Service are
installed.

2. Start the registry from the command prompt:

C:\> regedt32

The Registry Editor window appears.

3. Go to HKEY_LOCAL_
MACHINE\Software\Oracle\OracleMTSRecoveryService.

Modifying Registry Values for Oracle Fail Safe Configurations

Managing Recovery Scenarios 3-7

4. Copy the registry information appearing here to all nodes in the cluster.

5. Reboot the computer on which you added the key.

Modifying Registry Values for Oracle Fail Safe Configurations

3-8 Oracle Services for Microsoft Transaction Server Developer's Guide

4

Programming with Microsoft Transaction Server and an Oracle Database 4-1

4 Programming with Microsoft Transaction
Server and an Oracle Database

This chapter describes how to program with Microsoft Transaction Server and an
Oracle Database.

This chapter contains these topics:

■ COM Component Integration in a Transaction

■ Microsoft Transaction Server Application Development

■ OCI Integration with Microsoft Transaction Server

■ ODBC Integration with Microsoft Transaction Server Overview

OraMTS also provides integration with OO4O, Oracle Provider for OLE DB, and
Oracle Data Provider for .NET.

COM Component Integration in a Transaction
The focal point of the transaction process is a component of Microsoft Transaction
Server called Microsoft Distributed Transaction Coordinator (MS DTC). When a
client computer starts a business method on a transactional component, Microsoft
Transaction Server begins a transaction coordinated by the MS DTC. The Oracle
connection pooling layer enables the database to act as a resource manager (RM) in
the MS DTC-coordinated transaction. Figure 4–1 illustrates this transactional model.

See Also:

■ Oracle Objects for OLE Developer's Guide for information on using
OO4O with MTS

■ Oracle Provider for OLE DB Developer's Guide for information on
using Oracle Provider for OLE DB with MTS

■ Oracle Data Provider for .NET Developer's Guide for information on
using Oracle Data Provider for .NET with MTS

COM Component Integration in a Transaction

4-2 Oracle Services for Microsoft Transaction Server Developer's Guide

Figure 4–1 Component Integration in a Transaction

Client Computer The client computer activates the application components on the
MTS Application Server through a Web browser or through the component object
model (COM) /distributed component object model (DCOM).

MTS Application Server The MTS application server consists of the services that the
Windows operating service provides to host transactional application components that
a client computer can activate, either indirectly through a Web browser or directly
through the component object model (COM) /distributed component object model
(DCOM). In response to client requests, the application server invokes the COM
components. The invocations are performed within the scope of transactions where
required

Transactional Application Logic COM Components Three primary responsibilities:

■ Embed the business logic. If a component is transactional, Microsoft Transaction
Server starts a transaction for every method invocation on that component.

■ Acquire pooled connections to a Oracle Database through the Oracle resource
dispenser and Oracle Call Interface (OCI), Oracle Open Database Connectivity
(ODBC) Driver, Oracle Provider for OLE DB, or Oracle Objects for OLE
(OO4O).

■ Decide the outcome of the operation by notifying Microsoft Transaction Server of
its decision to commit or terminate the changes to all RMs.

COM/DCOM
or

Web Browser

Client
Computer

Transactional application logic
COM components

ODBC

OCI
Connection
Pool

OCI

Oracle
Net

OO4O OLE DB

MTS Application Server

Oracle
Net

Oracle
Database

Oracle
Server

MS DTC (TM)

Oracle MTS
Recovery

Service

Database
recovery

job

OLETx

Private RPC
(such as HTTP)

OLETx

OLETx

Microsoft Transaction Server Application Development

Programming with Microsoft Transaction Server and an Oracle Database 4-3

Oracle ODBC Driver, OO4O, Oracle Provider for OLE DB, and OCI Two primary
responsibilities:

■ Obtain a service context to the Oracle Database through the OCI connection
pooling component.

■ Provide connection pooling resources, if necessary (through Oracle Provider for
OLE DB or Oracle ODBC Driver). The Oracle ODBC Driver provides pooled
ODBC connections. Oracle Provider for OLE DB provides pooled data source
objects. OO4O uses the OCI connection pool.

OCI Connection Pool Three primary responsibilities:

■ Enlists the RM (Oracle Database) in the component's Microsoft Transaction Server
transaction.

■ Starts an Oracle global transaction corresponding to the Microsoft Transaction
Server transaction of which the component is a part.

■ Acts as a resource dispenser to perform client-side connection pooling.

Oracle Net Provides connectivity in distributed, heterogeneous computing
environments.

Oracle MTS Recovery Service Recovers in-doubt Oracle transactions that originated
from the host computer and are related to the Microsoft Transaction Server.

Database Recovery Job Detects in-doubt DTC transactions. This job extracts the
recovery service’s endpoint address in the in-doubt transaction’s XID and then
requests the outcome of the Microsoft DTC transaction from the recovery service.
Ultimately, the job will commit or terminate the in-doubt transaction when it receives
the transaction’s outcome.

Microsoft DTC Microsoft Distributed Transaction Coordinator is part of Microsoft
Transaction Server and has two primary responsibilities:

■ Commits and terminates transactions using the two-phase commit protocol.

■ Monitors transactions that require recovery. Multiple MS DTCs can be involved in
a single transaction. When a transactional Microsoft Transaction Server component
on computer A invokes another transactional Microsoft Transaction Server
component on computer B, a connection is opened between the MS DTC on
computer A and the MS DTC on computer B. When the root MS DTC commits or
terminates a transaction, it sends the request through all involved MS DTCs. The
transaction request is then passed to the OCI connection pooling/Microsoft
Transaction Server integration, which sends it to the database.

Oracle Database Acts as an RM for Microsoft Transaction Server. This is the database
on which the client transaction request is performed.

Microsoft Transaction Server Application Development
OCI connection pooling is used to coordinate a transaction in nearly all application
programming interfaces. This sections describes how transactions are registered and
how OCI connection pooling coordinates them.

Microsoft Transaction Server Application Development

4-4 Oracle Services for Microsoft Transaction Server Developer's Guide

Microsoft Transaction Server Component Registration
Application components that run in the Microsoft Transaction Server environment are
created as dynamic link libraries (DLLs). Application components are registered with
Microsoft Transaction Server using the Microsoft Transaction Server Explorer
graphical user interface (GUI) tool.

Types of Registration Components
When you register the application component, you mark it as one of the following
types:

■ Requires a Transaction The component must run in a transaction. If the
transaction does not currently exist, Microsoft Transaction Server automatically
creates a new transaction for each method invocation on the component.

■ Supports a Transaction The component can run within the client's transaction.
When a new component is created, its context inherits the transaction from the
context of the invoking client. If the client does not have a transaction, the new
context is also created without one.

■ Requires a New Transaction The component must run within its own transaction.
Microsoft Transaction Server automatically creates a new transaction for each
method invocation on the component.

■ Does Not Support Transactions The component does not run within a transaction.
Each method invocation on the component is performed without a surrounding
transaction, regardless of whether the invoking client includes a transaction.

Registration of Components
How you register an application component determines if it runs in a Microsoft
Transaction Server-coordinated transaction.

■ If the application component runs in a Microsoft Transaction Server-coordinated
transaction, the OCI connection pooling is always used and Microsoft Transaction
Server and its MS DTC component coordinate the creation, startup, management,
and commitment phases of the transaction. Microsoft Transaction Server ensures
that all changes made by the component are committed if the transaction succeeds,
or are terminated if the transaction fails.

■ If the application component does not run in a Microsoft Transaction
Server-coordinated transaction, the component runs in a Microsoft Transaction
Server environment, but the databases that it accesses may or may not take part in
MS DTC-coordinated transactions. If the transaction is not MS DTC-coordinated,
the client application must create, start, manage, and commit the transaction. OCI
connection pooling may be used, depending upon the interface accessing the
database (such as Oracle Provider for OLE DB, Oracle ODBC Driver, OO4O, or
others).

Microsoft Transaction Server-Coordinated Component Transaction
This section describes how OCI connection pooling, Microsoft Transaction Server, and
MS DTC operate with application components in a Microsoft Transaction
Server-coordinated transaction environment.

1. The client API (one of Oracle ODBC Driver, OCI, OO4O, ODP.NET or Oracle
Provider for OLE DB) calls OCI function OraMTSSvcGet() to obtain a service
context from the OCI connection pooling component.

Microsoft Transaction Server Application Development

Programming with Microsoft Transaction Server and an Oracle Database 4-5

2. The OCI connection pooling component enlists the transaction that will be
coordinated by the MS DTC component of Microsoft Transaction Server.

The OCI service and environment handles are returned to client applications.

3. The client application:

■ Performs the database operations.

■ Calls OCI function OraMTSSvcRel() to release the OCI pooling connection
obtained at the beginning of the transaction.

■ Calls SetComplete (to commit database operations) or SetAbort (to
terminate database operations) on the Microsoft Transaction Server context
object associated with the component.

4. MS DTC performs the two-phase commit protocol to prepare and commit or to
terminate the transaction. This notifies the OCI connection pooling component
and ends the transaction.

5. OCI connection pooling is notified and performs the necessary steps to complete
phase one, the prepare phase, and phase two, the commit or terminate phase.

Microsoft DTC-Coordinated Component Transaction
This section describes how OCI connection pooling, Microsoft Transaction Server, and
MS DTC operate with application components not running in a Microsoft Transaction
Server-coordinated transaction, but using MS DTC.

1. The client application starts an MS DTC transaction and connects to the Oracle
Database. The connection protocol follows one of the following scenarios:

■ Nonpooled OCI connections are obtained through OCI logon calls such as
OCIServerAttach() and OCISessionBegin(). For these connections, the
application calls OraMTSEnlCtxGet() to associate the OCI service context
with a Microsoft Transaction Server enlistment context.

■ A connection pool is obtained by calling OraMTSSvcGet(..,..,ORAMTS_
CFLG_NOIMPLICIT).

2. The client handles the context in one of the following scenarios:

■ For nonpooled connections, the client application passes in the enlistment
context to OraMTSJoinTxn().

■ For pooled connections, the client application passes the OCI service context
into OraMTSSvcEnlist().

3. The OCI connection pooling component enlists the connection, either pooled or
nonpooled, in the transaction coordinated by the MS DTC component of Microsoft
Transaction Server.

4. The client application then:

■ Performs database operations.

■ Calls OraMTSSvcEnlist() with a NULL transaction reference to de-enlist
from an MS DTC coordinated transaction.

For nonpooled connections, OraMTSTxnJoin() is invoked with a NULL
transaction reference to perform the de-enlistment.

■ Calls OraMTSSvcRel() to release a pooled connection back to the pool.

OCI Integration with Microsoft Transaction Server

4-6 Oracle Services for Microsoft Transaction Server Developer's Guide

For nonpooled connections, the client calls OraMTSEnlCtxRel() to release
the enlistment context and then logs off the database.

■ Calls the commit or terminate method on the MS DTC transaction object, such
as pTransaction->Commit() or pTransaction->Abort().

5. MS DTC performs the two-phase commit protocol to commit the transaction.

6. OCI connection pooling is notified and performs the necessary steps to complete
phase one, the prepare phase, and phase two, the commit or terminate phase.

OCI Integration with Microsoft Transaction Server
Example 4–1 illustrates how you can integrate the MTS sever with OCI. The only
change in code you must make involves obtaining and releasing the OCI service
context handle. Both OCI service context handle and environment handle are acquired
when you obtain a pooled OCI connection to the database by calling
OraMTSSvcGet(). Include the oramts.h header and link with the oramts.lib
library. When you are finished, call OCI function OraMTSSvcRel() to release the
service context handle and environment handle. Using OraMTSSvcGet() enables you
to receive connection pooling and implicit transaction support if you registered the
application component to run in a Microsoft Transaction Server transaction.

Ensure that for each process, you call OCIInitialize at least once before executing
any other OCI calls. This initializes the OCI process environment. In addition, you
must pass it the OCI_THREADED flag. If you are using Microsoft Internet Information
Server (IIS) and the components are being called as in-process libraries, then
OCIInitialize is already called for you. The registry key ORAMTS_OCI_OBJ_MODE
has been added. Set the value to 1 to initialize OCI in Object mode; otherwise OCI will
initialize in the threaded mode.

Example 4–1 Integration of MTS and OCI

#include <oci.h>
#include <oramts.h>
#include <xolehlp.h>
// other MTS relevant includes ...

// prototype for the error handler.
BOOL Chekerr(sword swOCIStat, OCIError *OCIErrh);

// MTS component method
HRESULT OCITestMethod()
{
 IObjectContext *pObjectContext = NULL;
 OCIEnv *myenvh = NULL;
 OCISvcCtx *mysvch = NULL;
 OCIError *myerrh = NULL;
 OCIStnt *mystmh = NULL;
 DWORD dwStat;
 HRESULT hRes = S_OK;
 sword swOCIStat;
 BOOL bCommit = FALSE;
 char *lpzStmt = "UPDATE EMP SET SAL = SAL + 1000";

 // Initialize the OCI environment first -- request OCI_THREADED
 OCIInitialize(OCI_THREADED, (dvoid*)NULL,NULL,NULL,NULL);
 // attempt to get a connection to the database through the resource dispenser
 OraMTSSvcGet(
"hr","hr_password","finprod_db",&mysvch, &myenvh, ORAMTS_CFLG_ALLDEFAULT);

OCI Integration with Microsoft Transaction Server

Programming with Microsoft Transaction Server and an Oracle Database 4-7

 // validate return status
 if(dwStat != ORAMTS_ERR_NOERROR)
 {
 printf("error: failed to obtain a connection to the database - %ld",
dwStat);
 goto cleanup;
 }
 // successful logon and enlistment in the MTS transaction. allocate statement
 // handles and other handles using the OCI environment handle myenvh
 swOCIStat = OCIHandleAlloc(myenvh, (void *)&myerrh,OCI_HTYPE_ERROR, 0 , NULL);
 if (Checkerr(swOCIStat, myerrh)) goto cleanup;
 swOCIStat = OCIHandleAlloc(myenvh, (dvoid *)&mystmh,OCI_HTYPE_STMT, 0,NULL);
 if (Checkerr(swOCIStat, myerrh)) goto cleanup;
 // prepare a DML statement
 OCIStmtPrepare(mystmh, myerrh, lpzStmt, lstrlen(lpzStmt), OCI_NTV_SYNTAX,
OCI_DEFAULT)
 Checkerr(swOCIStat, myerrh);
 // execute the statement -- ensure that AUTOCOMMIT is not requested.
 OCIStmtExecute(mysvch, mystmh, myerrh, 1, 0, NULL, NULL, OCI_DEFAULT);
 if (Checkerr(swOCIStat, myerrh)) goto cleanup;
 // all's well so far choose to go for a commit
 bCommit = TRUE;
cleanup:
 if (mystmh) OCIHandleFree((void*)mystmh, OCI_HTYPE_STMT);
 if (myerrh OCIHandleFree((void*)myerrh, OCI_HTYPE_ERROR);
 if (mysvch) OraMTSSvcRel(mysvch);
 if (bCommit)
 pObjectContext->SetComplete();
 else
 pObjectContext->Abort();
 return(bCommit ? S_OK : E_FAIL);
}

Integrating COM Components
There are several scenarios for integrating COM components. COM applications that
are not hosted by the Microsoft Transaction Server environment, also known as
standalone applications, cannot use declarative transactions through the Microsoft
Transaction Server Explorer Microsoft Management Console, but they can use the last
three of the scenario described.

COM Components Running in an MTS-Coordinated Transaction
COM components that are running in an MTS-coordinated transactions use OCI
connection pooling to implicitly enlist the database in a transaction. The following
pseudo-code listing illustrates the use of OCI functions:

OCIInitialize(OCI_THREADED, ...)
OraMTSSvcGet(..., &OCISvc, ..., ORAMTS_CFLAG_ALLDEFAULT)
...
OraMTSSvcRel(OCISvc)

Non-Transactional COM Components Running with OCI Connection Pooling
COM components that are marked as non-transactional and running in an
MTS-coordinated transaction use OCI connection pooling do not enlist the database in
a transaction. The following pseudo-code listing illustrates the use of OCI functions:

OCIInitialize(OCI_THREADED, ...)
OraMTSSvcGet(..., &OCISvc, ..., ORAMTS_CFLAG_NOIMPLICIT)

OCI Integration with Microsoft Transaction Server

4-8 Oracle Services for Microsoft Transaction Server Developer's Guide

...
OraMTSSvcRel(OCISvc)

COM Components Using MS DTC and OCI Connection Pooling
COM components that are not running in an MTS-coordinated transaction use MS
DTC with OCI connection pooling to explicitly enlist the database in a transaction. The
following pseudo-code listing illustrates the use of OCI functions:

OCIInitialize(OCI_THREADED, ...)
DTCGetTransactionManager(...)
BeginTransaction(..., &transaction)
OraMTSSvcGet(..., &OCISvc, ..., ORAMTS_CFLAG_NOIMPLICIT)
OraMTSSvcEnlist(OCISvc, ..., transaction, ...)
...
OraMTSvcEnlist(OCISvc, ..., NULL, ...)
OraMTSSvcRel(OCISvc)

COM Components Using MS DTC and Nonpooling OCI Connection
COM components that are not running in an MTS-coordinated transaction use MS
DTC with a non-pooling OCI connection to explicitly enlist the database in a
transaction. The following pseudo-code listing illustrates the use of OCI functions:

OCIInitialize(OCI_THREADED, ...)
OCI to get connected
OraMTSEnlCtxGET
DTCGetTransactionManager(...)
BeginTransaction(..., &transaction)
OraMTSJoinTxn (OCISvc, ..., transaction, ...)
...
OraMTSJoinTxn
...
OraMTSEnlCtxRel()
OCI to logoff

Using OCI Functions
This section details the OCI functions discussed earlier in this section. Table 4–1
summarizes these functions.

Table 4–1 Summary of OCI Functions for Integrating MTS and Oracle Database

OCI Function Summary

OraMTSSvcGet() on
page 4-9

Obtains a pooled connection from the OCI connection pool.

OraMTSSvcRel() on
page 4-11

Releases a pooled OCI connection, OCI service context, back to the
connection pool.

OraMTSSvcEnlist()
on page 4-11

Enlists or de-enlists an OCI connection in a transaction coordinated by
MS DTC.

OraMTSSvcEnlistEx()
on page 4-12

Enlists an OCI connection or service context in an MS DTC transaction.

OraMTSEnlCtxGet()
on page 4-13

Creates an enlistment context for a nonpooled OCI connection.

OraMTSEnlCtxRel()
on page 4-14

Eliminates a previously set up enlistment context for a nonpooled OCI
connection.

OraMTSJoinTxn() on
page 4-15

Enlists a nonpooled OCI connection in an MS DTC transaction.

OCI Integration with Microsoft Transaction Server

Programming with Microsoft Transaction Server and an Oracle Database 4-9

OraMTSSvcGet()
Obtains a pooled connection, also known as an OCI service context, from the OCI
connection pool. The pooled connection includes an OCI service context handle and an
OCI environment handle.

Syntax
DWORD OraMTSSvcGet(
 text* lpUname,
 text* lpPsswd,
 text* lpDbnam,
 OCISvcCtx** pOCISvc,
 OCIEnv** pOCIEnv,
 ub4 dwConFlgs);

Parameters

OraMTSTransTest()
on page 4-15

Tests if you are running inside a Microsoft Transaction Server-started
transaction.

OraMTSOCIErrGet()
on page 4-16

Retrieves the OCI error code and message text.

Table 4–2 OraMTSSvcGet() Parameters

Parameter IN/OUT Description

lpUname IN Username for connecting to the Oracle Database

lpPsswd IN Password for the username

lpDbnam IN The net service name for connecting to the database (created with
Oracle Net Manager or Oracle Net Configuration Assistant)

pOCISvc OUT Pointer to the OCI service context handle

pOCIEnv OUT Pointer to the OCI environment handle

Table 4–1 (Cont.) Summary of OCI Functions for Integrating MTS and Oracle Database

OCI Function Summary

OCI Integration with Microsoft Transaction Server

4-10 Oracle Services for Microsoft Transaction Server Developer's Guide

Returns
Returns ORAMTSERR_NOERROR upon successful acquisition of an OCI pooling
connection (OCI service context).

Usage Notes
■ OraMTSSvcGet() returns a pooled OCI connection to the caller, enabling a

database transaction using OCI to begin. Use OraMTSSvcGet() to implicitly
enlist the OCI connection in a transaction coordinated by Microsoft Transaction
Server. In this type of transaction, Microsoft Transaction Server controls the
creation, startup, management, and commitment phases of the transaction through
its MS DTC component.

■ OraMTSSvcGet() also provides connection pooling without enlisting the Oracle
Database in a Microsoft Transaction Server transaction. This is done by setting
OraMTSSvcGet() as follows:

OraMTSSvcGet(...,ORAMTS_CFLG_NOIMPLICIT)

■ In all cases where OraMTSSvcGet() is used, you must always use
OraMTSSvcRel() to release the connection when finished.

■ Use the flags ORAMTS_CFLG_SYSDBALOGN and ORAMTS_CFLG_SYSOPRLOGN
when connecting as SYSDBA and SYSOPER, respectively.

dwConFlgs IN Connection flags. Possible values are:

■ ORAMTS_CFLG_ALLDEFAULT

Obtains a pooled connection and enlists the connection in any
Microsoft Transaction Server transaction, if one exists. If the
component is nontransactional, no enlistment request is
dispensed.

■ ORAMTS_CFLG_NOIMPLICIT

Obtains a pooled connection, but does not enlist the resource in
any Microsoft Transaction Server transaction even if the
component is transactional. Use this flag if the component enlists
the connection resource later using OraMTSSvcEnlist(). Prior
to releasing a connection obtained in this fashion, the client must
de-enlist the resource if enlisted.

■ ORAMTS_CFLG_UNIQUESRVR

Requests a single OCI session for each OCI Server. In this release,
multiplexing is not supported. Therefore, this option is always
used.

■ ORAMTS_CFLG_SYSDBALOGN

Use this flag if connecting as SYSDBA.

■ ORAMTS_CFLG_SYSOPRLOGN

Use this flag if connecting as SYSOPER.

■ ORAMTS_CFLG_PRELIMAUTH

Use this flag if connecting as the user INTERNAL to pre-Oracle9i
databases. The INTERNAL account is no longer valid as of
Oracle9i. Instead, log on with a SYSDBA or SYSOPER account
using the ORAMTS_CFLG_SYSOPRLOGN or ORAMTS_CFLG_
SYSDBALOGN flag.

Table 4–2 (Cont.) OraMTSSvcGet() Parameters

Parameter IN/OUT Description

OCI Integration with Microsoft Transaction Server

Programming with Microsoft Transaction Server and an Oracle Database 4-11

■ To obtain a nonenlisted connection using the hr/hr_password account, call
OraMTSSvcGet() as follows:

OraMTSSvcGet("hr", "hr_password", "oracle", &OCISvc, &OCIEnv, ORAMTS_CFLG_
ALLDEFAULT | ORAMTS_CFLG_NOIMPLICIT);

■ OraMTSSvcGet() does not support placing the username (lpUname), password
(lpPsswd), and net service name syntax (lpDbname) together in the username
argument (for example, hr/hr_password@prod_fin). Instead, the caller must
fill in lpUname, lpPsswd, and lpDbname separately (as shown in the previous
syntax example). Calling OraMTSSvcGet() with the username and password as
NULL strings uses external authentication (operating system authentication) for the
connection.

OraMTSSvcRel()
Releases a pooled OCI connection, OCI service context, back to the connection pool.
Use this function to release connections that were acquired with OraMTSSvcGet().

Syntax
DWORD OraMTSSvcRel(OCISvcCtx* OCISvc);

Parameters

Returns
Returns ORAMTSERR_NOERROR upon successful release of a pooled OCI connection.

Usage Notes
■ An OCI pooled connection obtained through a previous call to OraMTSSvcGet()

is released back to the connection pool. Once released back to the connection pool,
the OCI service context, its environment handle, and all child handles are invalid.

■ A nontransactional client component must explicitly call OCITransCommit() or
OCITransAbort() prior to releasing a connection obtained through
OraMTSSvcGet(..., ...,ORAMTS_CFLG_ALLDEFAULT) back to the pool.
Otherwise, all changes made in that session are rolled back. A transaction
component uses the SetComplete or SetAbort methods on its Microsoft
Transaction Server object context.

■ Components that have called OraMTSSvcGet(..., ...,ORAMTS_CFLG_
NOIMPLICIT) to obtain a connection resource must first de-enlist the resource if
enlisted. If the connection was enlisted explicitly, pTransaction->Commit() or
pTransaction->Abort() must be called. Otherwise, OCITransCommit() or
OCITransAbort() must be called before releasing the connection back to the
pool.

OraMTSSvcEnlist()
Enlists or de-enlists an OCI connection in a transaction coordinated by MS DTC.

Table 4–3 OraMTSSvcRel() Parameters

Parameter IN/OUT Description

OCISvc IN OCI service context for a pooled connection

OCI Integration with Microsoft Transaction Server

4-12 Oracle Services for Microsoft Transaction Server Developer's Guide

Use this call to explicitly enlist pooled connections. Nonpooled connections must enlist
with OraMTSJoinTxn().

Syntax
DWORD OraMTSSvcEnlist(
 OCISvcCtx* OCISvc,
 OCIError* OCIErr,
 void* lpTrans,
 unsigned dwFlags);

Parameters

Returns
Returns ORAMTSERR_NOERROR on success.

Usage Notes
■ Use this call to explicitly enlist or de-enlist a pooled connection. For enlisting and

de-enlisting nonpooled connections, use OraMTSSvcRel().

■ OraMTSSvcEnlist() enlists (or de-enlists) pooled OCI connections obtained
previously through OraMTSSvcGet() with the ORAMTS_CFLG_NOIMPLICIT flag
and not yet released with OraMTSSvcRel(). The pooled OCI connections must
be explicitly enlistable. When the transaction is complete, you must de-enlist
OraMTSSvcEnlist(), passing NULL as the transaction pointer as follows:

OraMTSSvcEnlist (OCISvc, OCIErr, NULL, ORAMTS_ENFLG_DEFAULT)

You must use OraMTSSvcRel() to release the connection when done.

■ Callers must allocate a connection, enlist the connection, perform work, de-enlist
the connection, release the connection, and then attempt to commit or terminate.

OraMTSSvcEnlistEx()
Enlists an OCI connection or service context in an MS DTC transaction. Use this call
only to explicitly enlist pooled connections. Nonpooled connections must enlist with
OraMTSJoinTxn().

Syntax
DWORD OraMTSSvcEnlistEx(
 OCISvcCtx* OCISvc,

Table 4–4 OraMTSSvcEnlist() Parameters

Parameter IN/OUT Description

OCISvc IN OCI service context for pooled connections obtained by calling
OraMTSSvcGet()

OCIErr IN/OUT OCI error handle (ignored)

lpTrans IN Pointer to the MS DTC-controlled transaction in which to enlist. If
NULL, the OCI connection is de-enlisted from the MS DTC-controlled
transaction.

dwFlags IN Flag used for enlisting in a transaction. Use the ORAMTS_ENFLG_
DEFAULT value. If enlisting, then start a new Oracle global
transaction. If de-enlisting, then detach from any global Oracle
transaction and delete the context object if the OCI service context
represents a nonpooled connection.

OCI Integration with Microsoft Transaction Server

Programming with Microsoft Transaction Server and an Oracle Database 4-13

 OCIError* OCIErr,
 void* lpTrans,
 unsigned dwFlags,
 char* lpDBName);

Parameters

Returns
Returns ORAMTSERR_ILLEGAL_OPER.

Usage Notes
Use OraMTSSvcEnlistEx() for pooled connections or OraMTSJoinTxn() for
nonpooled connections.

OraMTSEnlCtxGet()
Creates an enlistment context for a nonpooled OCI connection.

Syntax
DWORD OraMTSEnlCtxGet(
 text* lpUname,
 text* lpPsswd,
 text* lpDbnam,
 OCISvcCtx* pOCISvc,
 OCIError* pOCIErr,
 ub4 dwFlags,
 void** pCtxt);

Parameters

Table 4–5 OraMTSSvcEnlistEx() Parameters

Parameter IN/OUT Description

OCISvc IN OCI service context for pooled connections obtained by calling
OraMTSSvcGet()

OCIErr IN/OUT OCI error handle (ignored)

lpTrans IN Pointer to the MS DTC-controlled transaction in which to enlist. If
NULL, the OCI connection is de-enlisted from the MS DTC-controlled
transaction.

dwFlags IN Flag used for enlisting in a transaction. Use the ORAMTS_ENFLG_
DEFAULT value. If enlisting, then start a new Oracle global transaction.
If de-enlisting, then detach from any global Oracle transaction and
delete the context object if the OCI service context represents a
nonpooled connection.

lpDBName - Net service name for connecting to the database (created with Oracle
Net Manager or Oracle Net Configuration Assistant)

Table 4–6 OraMTSEnlCtxGet() Parameters

Parameter IN/OUT Description

lpUname IN Username for connecting to the Oracle Database

lpPsswd IN Password for connecting to the Oracle Database

lpDbnam IN Net service name for connecting to a database

OCI Integration with Microsoft Transaction Server

4-14 Oracle Services for Microsoft Transaction Server Developer's Guide

Returns
Returns ORAMTSERR_NOERROR on success.

Usage Notes
■ This call sets up an enlistment context for a nonpooled connection. This call must

be started just after the caller establishes the OCI connection to the database. Once
created, this context can be passed into OraMTSJoinTxn() calls. Prior to deleting
the OCI connection, OraMTSEnlCtxRel() must be called to delete the enlistment
context.

■ Callers must:

■ Allocate a nonpooled connection through OCI.

■ Create an enlistment context by calling OraMTSEnlCtxGet().

■ Enlist the connection by calling OraMTSJoinTxn().

■ Perform database work.

■ De-enlist the connection by calling OraMTSJoinTxn() with a NULL
transaction pointer.

■ Attempt to commit or terminate work.

■ Release the enlistment context by calling OraMTSEnlCtxRel().

■ Release the nonpooled OCI connection and delete its associated OCI
environment handle.

OraMTSEnlCtxRel()
Eliminates a previously set up enlistment context for a nonpooled OCI connection.

Syntax
DWORD OraMTSEnlCtxRel(void* pCtxt);

Parameters

Returns
Returns ORAMTSERR_NOERROR on success.

pOCISvc IN OCI service context for a nonpooled connection

pOCIErr IN OCI error handle

dwFlags IN Enlistment flags. The only value currently permitted is 0.

pCtxt OUT Enlistment context to be created

Table 4–7 OraMTSEnlCtxRel() Parameters

Parameter IN/OUT Description

pCtxt IN Enlistment context to eliminate

Table 4–6 (Cont.) OraMTSEnlCtxGet() Parameters

Parameter IN/OUT Description

OCI Integration with Microsoft Transaction Server

Programming with Microsoft Transaction Server and an Oracle Database 4-15

Usage Notes
■ Before dropping a nonpooled OCI connection, a client must call

OraMTSEnlCtxRel() to eliminate any enlistment context it may have created for
that connection. The enlistment context can maintain OCI handles allocated off the
connection's OCI environment handle. This makes it imperative that the
environment handle is not deleted for the associated enlistment context.

OraMTSJoinTxn()
Enlists a nonpooled OCI connection in an MS DTC transaction.

Syntax
DWORD OraMTSJoinTxn(void* pCtxt,

void* pTrans);

Parameters

Returns
Returns ORAMTSERR_NOERROR on success.

Usage Notes
■ Clients use this call with nonpooled OCI connections to enlist connections in MS

DTC-coordinated transactions. The client passes in the wide reference to the
enlistment context representing the OCI connection, along with a reference to an
MS DTC transaction object. If pTrans is NULL, the OCI connection is de-enlisted
from any MS DTC transaction in which it is currently enlisted. You can enlist a
previously-enlisted OCI connection in a different MS DTC transaction.

OraMTSTransTest()
Tests if you are running inside a Microsoft Transaction Server-started transaction.

Syntax
BOOL OraMTSTransTest();

Returns
Returns true if running inside a Microsoft Transaction Server transaction.

Usage Notes
Microsoft Transaction Server transactional components use OraMTSTransTest() to
check if a component is running within the context of a Microsoft Transaction Server
transaction. Note that this call can only test Microsoft Transaction Server-started
transactions. Transactions started by directly calling the MS DTC are not detected.

Table 4–8 OraMTSJoinTxn() Parameters

Parameter IN Description

pCtxt IN Enlistment context for the OCI connection

pTrans IN Reference to the MS DTC transaction object

ODBC Integration with Microsoft Transaction Server Overview

4-16 Oracle Services for Microsoft Transaction Server Developer's Guide

OraMTSOCIErrGet()
Retrieves the OCI error code and message text, if any, from the last OraMTS function
operation, typically OraMTSSvcGet() or OraMTSJoinTxn().

Syntax
BOOL OraMTSOCIErrGet(DWORD* dwErr,

LPCHAR lpcEMsg,
DWORD* lpdLen);

Parameters

Returns
Returns true if an OCI error is encountered. Otherwise, false is returned. If true is
returned and lpcEMsg and lpdLen are valid, and there is a stashed error message, up
to lpdLen bytes are copied into lpcEMsg. lpdLen is set to the actual number of
message bytes.

Usage Notes
Example 4–2 illustrates how OraMTSOCIErrGet() retrieves the OCI error code and
OCI error message text, if any, from the last OraMTSSvc() operation on this thread.

Example 4–2 Retrieving the OCI Error Code and Message Text

DWORD dwStat = OraMTSSvcGet("hr",
"invalid_password",
"fin_prod",
"db",
&mysvch,
&myenvh,
ORAMTS_CFLG_ALLDEFAULT);

if (dwStat != ORAMTS_ERR_NOERROR)
{

DWORD dwOCIErr;
char errBuf[MAX_PATH];
DWORD errBufLen = sizeof(effBuf);

if (OraMTSOCIErrGet(&dwOCIErr, &errBuf, &errBufLen))
printf("OCIError %d: %s"\n);

}

ODBC Integration with Microsoft Transaction Server Overview
This section describes how to use Oracle ODBC Driver with Microsoft Transaction
Server and a Oracle Database. No changes to OCI code are necessary for ODBC to
operate successfully.

Table 4–9 OraMTSOCIErrGet() Parameters

Parameter IN/OUT Description

dwErr - Error code

lpcEMsg - Buffer for the error message, if any

lpdLen - Set to the actual number of message bytes

ODBC Integration with Microsoft Transaction Server Overview

Programming with Microsoft Transaction Server and an Oracle Database 4-17

Setting the Connection Attribute
To use Microsoft Transaction Server with either Oracle ODBC Driver 11.1 or Microsoft
Oracle ODBC driver, set the connection attribute using the SQLSetConnectAttr
function to call the parameter SQL_ATTR_ENLIST_IN_DTC in the ODBC code. This
enables you to receive connection pooling and implicit transaction support.

Using Oracle ODBC Driver
The ODBC Driver Manager distributed with ODBC 3.0 is a Resource Dispenser that
supports connection pooling. Oracle ODBC Driver release 11.1 integrates with the
ODBC 3.0 Driver Manager by supporting the SQLSetConnectAttr(...,...,
SQL_ATTR_ENLIST_IN_DTC) call to enlist or de-enlist the ODBC connection used in
MS DTC-coordinated transactions.

Use the Oracle ODBC Driver 11.1 with:

■ Applications you develop

■ The sample banking application that Microsoft provides with Microsoft
Transaction Server.

To configure Oracle ODBC Driver, follow these steps:

1. Choose Start > Settings > Control Panel.

The Control Panel window appears.

2. Double-click ODBC.

The ODBC Data Source Administrator dialog box appears.

3. Choose the File DSN tab.

4. To make Oracle ODBC Driver work with Microsoft sample banking application
demo, follow these steps. Otherwise, skip this step.

■ Back up Microsoft mtssamples.dsn file. This file is located in
ROOTDRIVE:\program files\common files\odbc\data sources.

■ Select mtssamples.dsn and click Remove.

■ Click Yes when prompted.

This deletes the configuration file that enables the Microsoft Transaction
Server sample application demo to use the Microsoft ODBC driver.

If you don't intend to use the demo, click Add to create a new File data source
name (DSN).

The Create New Data Source wizard appears.

5. Select Oracle in HOME_NAME.

6. Click Advanced.

7. Add the following information in the keywords and values field:

SERVER=database_alias
USERNAME=hr
PASSWORD=hr_password

where:

■ SERVER is the The database alias used by the demo to access the database
mtsdemo.

ODBC Integration with Microsoft Transaction Server Overview

4-18 Oracle Services for Microsoft Transaction Server Developer's Guide

■ USERNAME is the database username for this application, such as hr.

■ PASSWORD is the database password for username hr.

Verify that the hr schema contains the account and receipt tables.

8. Click OK.

9. Click Next to continue with the Create New Data Source wizard.

10. For the Microsoft sample application, enter mtssamples.dsn (Microsoft ODBC
name). This name must exactly match the name you removed in Step 4.

For applications you develop, enter the name of the DSN file that will be used.

11. Complete the remaining Create New Data Source wizard pages.

12. Click OK to exit the ODBC Data Source Administrator dialog box.

13. Exit the Control Panel window.

Using Microsoft Oracle ODBC Driver
As an alternative to the Oracle ODBC driver, you can use the Microsoft Oracle ODBC
Driver. You should be aware that you would not be able to integrate with OO4O,
Oracle Provider for OLE DB, and Oracle Data Provider for .NET if using the Microsoft
driver. Also, you will not receive the performance benefits of the Oracle ODBC driver,
API support for integration, or Oracle client support services.

After enabling the Microsoft Oracle ODBC Driver, perform these additional steps to
configure the Microsoft Oracle ODBC Driver:

To configure the Microsoft Oracle ODBC Driver:

1. Install Oracle Required Support Files (RSF) and SQL*Net 2.3 or later on the
computer where the Microsoft Oracle ODBC Driver is operating.

2. Run the ORACLE_BASE\ORACLE_HOME\oramts\samples\
sql\omtssamp.sql script.

3. Use SQL*Net Easy Config to set up a database alias connection. This alias is used
in the mtssamples.dsn file.

4. If you installed the RSFs in a home with Oracle Net installed, be sure to set the
following registry parameter at HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE:

ORAOCI = ORA73.DLL

See Also:

Microsoft Transaction Server SDK for information

See Also: "Setting Up MTS to Access Oracle" in the Microsoft
Transaction Server online Help for instructions on enabling the
Microsoft Oracle ODBC Driver

5

Tuning Microsoft Transaction Server Performance 5-1

5 Tuning Microsoft Transaction Server
Performance

This chapter provides Microsoft Transaction Server performance tuning information.

This chapter contains these topics:

■ Improving Microsoft Transaction Server Application Performance

■ Managing Microsoft Transaction Server Connections

■ Increasing the Transaction Timeout Parameter

■ Changing Initialization Parameter Settings

■ Additional Parameters

■ Starting MSDTC

Improving Microsoft Transaction Server Application Performance
Optimizing the programming methods of your application improves its performance.
For example, placing all code for a given transaction into one component object
model (COM) component means you do not mark that component as transactional.
This eliminates the overhead of going through Microsoft Transaction Server. You can
subsequently use the Oracle commit or rollback functions to control that transaction in
the component. If you are using the Oracle Call Interface (OCI), you can still use
ORAMTSSvcGet(), but you can also use the ORAMTS_CFLG_NOIMPLICIT flag. If you
are updating across two or more Oracle Database instances, use database links and
connect to one database from the COM component.

Managing Microsoft Transaction Server Connections
When a .NET or COM component ends a session with the Oracle Database, the
connection does not immediately terminate. Instead, it remains idle in a connection
pool, where it is available for reuse by another component attempting a new
connection to the Oracle Database.

Connection Pooling Registry Parameters
The idle period during which a connection is reusable reduces the resource costs
associated with opening a new connection. The amount of time that the connection
remains idle and available in the connection pool is determined by several registry

See Also: "OCI Integration with Microsoft Transaction Server" for
more information on using ORAMTSSvcGet()

Managing Microsoft Transaction Server Connections

5-2 Oracle Services for Microsoft Transaction Server Developer's Guide

parameter settings. You can modify these parameters on the computers on which the
client Microsoft Transaction Server components are installed, in the file HKEY_LOCAL_
MACHINE\SOFTWARE\ORACLE\HOMEID:

ORAMTS_CONN_POOL_TIMEOUT The time, in seconds, that the connection remains
idle and available for reuse in the client side connection pool, before timing out and
being released. The default value of this parameter is 120 seconds.

ORAMTS_SESS_TXNTIMETOLIVE The time, in seconds, that the connection
established using OraMTSSvcGet() remains alive in the client side connection pool
after being released by an OraMTSSvcRel() call. The sum of the ORAMTS_CONN_
POOL_TIMEOUT and ORAMTS_NET_CACHE_TIMEOUT values determines the actual
time before a connection terminates completely. The default value of this parameter is
120 seconds.

ORAMTS_NET_CACHE_TIMEOUT The resource dispenser implemented inside
Oracle Services for Microsoft Transaction Server establishes pooled connections to
Oracle databases. When these connections are no longer in use, the user sessions are
disconnected after the timeout specified by ORAMTS_CONN_POOL_TIMEOUT.
However, the underlying Oracle Net connections are cached for the period specified
by this parameter. After this time, expressed in milliseconds, a cached Oracle Net
connection to the database will be terminated. The default value of this parameter is
120000 milliseconds. Oracle recommends setting this parameter to a higher value than
the value for ORAMTS_CONN_POOL_TIMEOUT. The sum of the time periods specified
for ORAMTS_CONN_POOL_TIMEOUT and ORAMTS_NET_CACHE_TIMEOUT determines
the actual time before a connection terminates completely.

ORAMTS_NET_CACHE_MAXFREE The maximum number of free server connections
that should be maintained in the client-side connection pool at a given time. The
default value of this parameter is 5.

ORAMTS_OSCREDS_MATCH_LEVEL The level of Windows security checking
implemented when the OS_ROLES initialization parameter in the init.ora file is
true.

When a user establishes a connection to the Oracle Database using the CONNECT
command, the Windows username is associated with specific database roles and
privileges. When the user disconnects, this connection becomes idle and available in
the pool. When another user enters the CONNECT command, if the Windows username
is identical to the one used by the first user, the second user can receive the same
database roles and privileges as the first user. This is a considerable security concern,
especially if the second user possesses only the CREATE SESSION and RESOURCE
database roles but receives the DBA privileges of the first user.

By default, the ORAMTS_OSCREDS_MATCH_LEVEL parameter value is OS_AUTH_
LOGIN, and Windows security checking is performed only if the username and
password are NULL.

The most secure setting for this parameter is ALWAYS, which ensures that Windows
security checking is performed in all cases, and takes care of possible security breaches
due to identical non-null Window usernames.

Because Windows security checking is a resource-intensive operation, you may wish
to set the value of this parameter to NEVER. However, if you know that OS_ROLES is
true, or if you use operating system-authenticated connections, you should avoid this
option.

Changing Initialization Parameter Settings

Tuning Microsoft Transaction Server Performance 5-3

Increasing the Transaction Timeout Parameter
If transaction requests are timing out before completing, the transaction timeout
parameter may be set too low. Increase the transaction timeout parameter to ensure
that transactions have enough time to complete.

To increase the transaction timeout parameter:

1. Go to the Windows computer on which Microsoft Transaction Server is installed.

2. From the Start menu, select Programs, then Administrative Tools, then
Component Services.

The Component Services window appears.

3. Double-click Console Root in the Component Services window so its tree
structure expands.

4. Double-click Component Services.

5. Double-click Computers.

6. Right-click My Computer.

A menu appears with several options.

7. Choose Properties.

The My Computer Properties dialog box appears.

8. Choose the Options tab.

9. Enter a value in the Transaction Timeout field and click OK.

The transaction timeout value is increased. For most environments, 60 seconds
may be enough. However, if the transaction is competing with numerous
concurrent transactions, this value may be too low.

Changing Initialization Parameter Settings
You may need to modify several initialization parameters to use the Oracle Database
with Microsoft Transaction Server. The values you should set these parameters to are
based on the database workload environment.

To verify initialization parameter file values, follow these steps:

1. Ensure that you have SYSDBA privileges.

2. Go to the computer on which the Oracle Database is installed.

3. Start SQL*Plus:

C:\> sqlplus /NOLOG

4. Connect to the database as SYSDBA:

SQL> CONNECT / AS SYSDBA

5. Check the value for the SESSIONS parameter:

SQL> SHOW PARAMETER SESSIONS

6. Check the value for the PROCESSES parameter:

SQL> SHOW PARAMETER PROCESSES

Additional Parameters

5-4 Oracle Services for Microsoft Transaction Server Developer's Guide

The current settings for both SESSIONS and PROCESS parameters are typically
appropriate for running the Microsoft application demo. For creating and
deploying .NET or COM-based applications, the values for these parameters
depend on the database environment's anticipated workload. For example, if you
anticipate 100 concurrent connections to the Oracle Database, consider setting
both values to 200 to accommodate a possible system overload. Ensure that you
do not set these parameters too high, because they are resource-intensive.

7. Set the following initialization parameters to at least these values:

■ SESSIONS = 200 (or larger if anticipating heavier loads)

■ PROCESSES = 200 (or larger if anticipating heavier loads)

8. Shut down the Oracle Database:

SQL> SHUTDOWN

9. Restart the Oracle Database:

SQL> STARTUP

10. Exit SQL*Plus:

SQL> EXIT

Additional Parameters
Use the registry variable ORAMTS_ABORT_MODE to control whether a new connection
always performs an abort or whether the originally enlisted connection can be used to
perform the abort, that is, whether the abort is synchronous or asynchronous.

By default, the originally enlisted connection performs transaction aborts (whenever
possible).

Registry variable: ORAMTS_ABORT_MODE

Values:

■ ORAMTS_ABORT_MODE_NEW_CONN_ONLY: Results in asynchronous aborts. A
new connection to the database is opened for performing transaction aborts.

■ Any other value implies the default behavior.

Starting MSDTC
The Microsoft Distributed Transaction Coordinator (MS DTC) must be running to
enable communication with Oracle Services for Microsoft Transaction Server.

To start MS DTC, follow these steps:

1. On the computer where Microsoft Transaction Server is installed, from the Start
menu, choose Programs, then Administrative Tools, then Component Services.

The Component Services window appears.

2. In the Component Services Window, expand Component Services under the
Console Root.

3. Expand Computers under Component Services.

See Also: Oracle Database Reference for information about these
parameters.

Starting MSDTC

Tuning Microsoft Transaction Server Performance 5-5

4. Right-click My Computer.

A menu with several options appears.

5. Choose Start MSDTC.

MS DTC starts.

Starting MSDTC

5-6 Oracle Services for Microsoft Transaction Server Developer's Guide

6

Troubleshooting Oracle Microsoft Transaction Server 6-1

6 Troubleshooting Oracle Microsoft
Transaction Server

This chapter provides information on troubleshooting Oracle Microsoft Transaction
Server.

This chapter contains these topics:

■ Tracking OraMTS Performance

■ Correcting Oracle Net Changes that Impact Connection Pooling

■ Designing an Application that Uses Multiple Databases

■ Working with Different Types of Connection Pooling

■ Working with In-Doubt Transactions

■ Dropping the Microsoft Transaction Server Administrative User Account

Tracking OraMTS Performance
Trace files record information about OraMTS performance. This information includes:

■ Any errors

■ Enlistment requests and outcomes

■ Prepare, commit, and terminate requests and their outcomes

Registry parameters handle tracing within oramts.dll, which performs the
following tasks:

■ It implements the API for integrating the Oracle Database with Microsoft
Transaction Server.

■ It works as a resource dispenser to provide pooled Oracle Call Interface (OCI)
connections.

■ It enables clients with nonpooled OCI connections to enlist in transactions started
by Microsoft Distributed Transaction Coordinator (MS DTC).

■ It communicates with OraMTS to enlist the Oracle Database in transactions started
by MS DTC.

The MTS-based COM components can acquire connections to both dedicated and
shared Oracle servers of a database. The components can then attempt to perform
distributed updates, using data manipulation language, on another database using
pre-existing database links between these databases. While the distributed updates
from shared servers succeed, those from dedicated servers fail.

Correcting Oracle Net Changes that Impact Connection Pooling

6-2 Oracle Services for Microsoft Transaction Server Developer's Guide

Registry parameters that handle tracing are automatically set in \\HKEY_LOCAL_
MACHINE\SOFTWARE\ORACLE\HOMEID during the installation of OraMTS.

Restart all applications using OraMTS. Further, if you have modified parameters
related to the tracing of the OracleMTSRecoveryService, restart the Windows
service.

Table 6–1 shows the range of ORAMTS_CP_TRACE_LEVEL trace values.

Correcting Oracle Net Changes that Impact Connection Pooling
The connection pool provided by the OraMTS layer, oramts.dll, uses a connection's
net service name to identify pooled connections for an application. If changes are
made to the net service name, and pooled connections are available, the application
using the connection pool must be stopped and restarted. These changes can include
altering the host or the database system identifier (SID) for the net service name in the
tnsnames.ora file.

These changes ensure that all currently pooled connections corresponding to the old
net service name are destroyed and any new pooled connections use the changes made
to the net service name. This includes any application hosting Microsoft Transaction
Server components.

To empty connection pools, perform the following:

■ If the application is an out-of-process Microsoft Transaction Server component
(server package), run the following application:

C:\> mtxstop

This empties the connection pools.

■ If the application is an in-process Microsoft Transaction Server component (library
package), terminate the application. This also empties the connection pool.

Designing an Application that Uses Multiple Databases
Oracle clients can establish connections to a database in two ways:

Table 6–1 ORAMTS_CP_TRACE_LEVEL Trace Registry Parameter Values

Level Description

0 Disables tracing. If the registry parameter is not set in the registry or as an environment
variable, then tracing is disabled. This is equivalent to setting the level to 0.

1 Traces errors only

2 Traces important events in addition to errors

3 This level is not supported; if you set this parameter to 3, level 2 tracing is enabled.

4 Traces function entry/exit, important events, and errors

5 Traces reference counting function and constructor/destructor entry/exit

Note: The Oracle MTS Recovery Service also generates trace file
output in the ORACLE_BASE\ORACLE_HOME\oramts\trace
directory.

Designing an Application that Uses Multiple Databases

Troubleshooting Oracle Microsoft Transaction Server 6-3

■ Typical Oracle clients establish connections to a database using a dedicated server
configuration. In a dedicated server configuration, one client corresponds to one
Oracle server process.

■ For scalability under heavy loads, Oracle clients have the option of using a shared
server configuration. In a shared server configuration, a single Oracle server
process can be shared by more than one client connection.

Microsoft Transaction Server communicates with the database through distributed
transactions. In a dedicated server configuration, you cannot use distributed updates
(data manipulation language statements across database links) from other databases.
However, if the original connection to the database is established using shared server
configurations, the distributed updates from other databases succeed.

To use data manipulation language statements in shared server configurations, set the
following parameter in the tnsnames.ora file:

SERVER=dedicated

This forces the Oracle Net listener to provide a dedicated connection. Figure 6–1 shows
this process.

Figure 6–1 Distributed DML Statements from MTS Applications

See Also: Oracle Net Services Administrator's Guide

Oracle
Database

A

Oracle
Database

B

Oracle
Server

Oracle
Server

Distributed
DML NOT
Supported

Distributed
DML

Supported

Oracle
Server

Oracle
Server

Dedicated
Server

Connection

Shared
Server

Connection

Oracle Net

Working with Different Types of Connection Pooling

6-4 Oracle Services for Microsoft Transaction Server Developer's Guide

Working with Different Types of Connection Pooling

Oracle Net Connection Pooling Oracle Net connection pooling is a server-side
feature that is implemented only if the Oracle Database is configured for shared server
support. Oracle Net connection pooling enables you to minimize the number of
physical network connections to a shared server. This is achieved by sharing a
dispatcher's set of connections among multiple client processes.

Microsoft Transaction Server Connection Pooling Microsoft Transaction Server
provides a resource pooling infrastructure that enables certain resources to be pooled,
such as memory and database connections.

OCI Connection Pooling OCI connection pooling layer works with MTS resource
pooling to provide pooled Oracle client/server sessions. The OCI connection pooling
layer also caches Oracle Net connections to reduce client/server session setup time.

Working with In-Doubt Transactions
Oracle uses distributed transactions in the following configurations:

■ Distributed database configurations, such as distributed updates using database
links

■ External transaction managers, such as Tuxedo and MS DTC, for coordinating
transaction outcome

The two-phase commit protocol completes these transactions. During phase one, the
transaction manager (TM) requests the various resource managers involved in the
TM's transaction to prepare the underlying distributed transactions. In phase two, the
TM determines whether it commits or terminates the transaction, and requests the
resource managers to commit or terminate the underlying transaction. If a resource
manager fails to receive the phase two notification, the underlying distributed
transaction becomes in-doubt.

To integrate Oracle with Microsoft Transaction Server, distributed transactions are
used in the database. Distributed transactions correspond to transactions coordinated
by the MS DTC. A distributed transaction can become in-doubt when the transaction
cannot commit or terminate (phase two of the two-phase commit). This occurs when
the Microsoft Transaction Server application server process, database, or network fails.

Dropping the Microsoft Transaction Server Administrative User Account
The Microsoft Transaction Server administrative user account is created by running
the oramtsadmin.sql script. If you later change the database with which Microsoft
Transaction Server is coordinating transactions, you can drop the administrative user
account schema from the previous database.

To drop the Microsoft Transaction Server administrative user account:

1. Start SQL*Plus:

c:\> sqlplus /NOLOG

2. Connect to the database as SYSDBA:

SQL> CONNECT / AS SYSDBA

See Also: Chapter 3, "Managing Recovery Scenarios"

Dropping the Microsoft Transaction Server Administrative User Account

Troubleshooting Oracle Microsoft Transaction Server 6-5

3. Enter the following command to drop administrative user account schema:

SQL> DROP USER mtsadmin_username CASCADE;

where mtsadmin_username is the Microsoft Transaction Server administrative
user account (default is mtssys).

See Also: See Chapter 3, "Managing Recovery Scenarios" for
information on creating the Microsoft Transaction Server
administrative user account for the new database

Dropping the Microsoft Transaction Server Administrative User Account

6-6 Oracle Services for Microsoft Transaction Server Developer's Guide

Glossary-1

Glossary

Atomicity, Consistency, Isolation, and Durability (ACID)

ACID consists of the four primary attributes provided to any transaction by a
transaction manager (also called a transaction manager).

component object model (COM)

A binary standard that enables objects to interact with other objects, regardless of the
programming language in which each object was written.

distributed component object model (DCOM)

An extension of COM that enables objects to interact with other objects across a
network.

data manipulation language

The category of SQL statements that query and update database data. Common DML
statements are SELECT, INSERT, UPDATE, and DELETE.

JOB_QUEUE_PROCESSES

This initialization parameter specifies the number of job queue processes started in an
instance. This parameter must be set to at least 1 to run job queue processes.

listener.ora

A listener configuration file that identifies the following for a listener:

■ Unique name

■ Protocol addresses on which it accepts connection requests

■ Services for which it is listening

Microsoft .NET

Microsoft .NET is a set of Microsoft software technologies used to connect information,
people, systems, and devices through web services to each other and to larger
applications over the Internet.

Microsoft application demo

An Oracle Call Interface (OCI) implementation of the Visual C++ Sample Bank
package that ships with Microsoft Transaction Server on Windows.

Microsoft Distributed Transaction Coordinator (MS DTC)

The focal point of the transaction process is a component of Microsoft Transaction
Server called Microsoft Distributed Transaction Coordinator (MS DTC).

Microsoft Transaction Server

Glossary-2

Microsoft Transaction Server

A COM-based transaction processing system that runs on an Internet or network
server.

mtssys

The default Microsoft Transaction Server administrator username. In releases prior to
Oracle9i Database release 1 (9.0.1), this was the username for the OraMTS.

net service name

The name used by clients to identify an Oracle Net server and the specific system
identifier (SID) or database for the Oracle Net connection. A net service name is
mapped to a port number and protocol. A net service name is also known as a connect
string, database alias, host string, or service name.

This also identifies the specific SID or database to which the connection is attaching,
and not just the Oracle Net server.

OraMTS

Abbreviation for "Oracle Services for Microsoft Transaction Server".

Oracle Call Interface (OCI)

An application programming interface that enables you to manipulate data and
schemas in a database. You compile and link an OCI program in the same way that
you compile and link a nondatabase application. There is no requirement for a
separate preprocessing or precompilation step.

Oracle Data Provider for .NET (ODP.NET)

Oracle Data Provider for .NET (ODP.NET) features optimized data access to the Oracle
Database from a .NET environment. ODP.NET includes support for connection
pooling, PL/SQL, LOBs, RefCursors, globalization/localization, proxy user
authentication/ parameter array binding, named parameters, and safe type mapping
between Oracle types and .NET types.

Oracle Fail Safe

Ensures that if a failure occurs on one cluster node, then the databases and
applications running on that node fail over (move) automatically and quickly to a
surviving node.

Oracle MTS Recovery Service

The Oracle MTS Recovery Service resolves in-doubt transactions on the computer that
started the failed transaction. A scheduled recovery job for each Microsoft Transaction
Server-enabled database lets the Oracle MTS Recovery Service resolve in-doubt
transactions.

Oracle Objects for OLE (OO4O)

Oracle Objects for OLE (OO4O) is a COM-based database connectivity tool that
combines seamless and optimized access to Oracle Database instances with easy to use
interfaces.

Oracle Open Database Connectivity (ODBC) Driver

Oracle ODBC Driver provides a standard interface that allows one application to
access many different data sources. The application's source code does not have to be
recompiled for each data source. A database driver links the application to a specific
data source. A database driver is a dynamic link library that an application can invoke

transaction identifiers (XIDs)

Glossary-3

on demand to gain access to a particular data source. Therefore, the application can
access any data source for which a database driver exists.

Oracle Provider for OLE DB

Interfaces that offer high performance and efficient access to Oracle data by
applications, compilers, and other database components.

Oracle Services for Microsoft Transaction Server (OraMTS)

A component that provides full integration of the Oracle Database with Microsoft
Transaction Server. This component enables you to develop and deploy COM-based
applications using Microsoft Transaction Server.

Optimal Flexible Architecture (OFA)

A set of file naming and placement guidelines for Oracle software and databases.

resource manager (RM)

Microsoft Transaction Server enlists the database to act as a resource manager (RM) in
the transaction process.

SYSDBA

A special database administration role that contains all system privileges with the
ADMIN OPTION and the SYSOPER system privilege. SYSDBA also permits CREATE
DATABASE actions and time-based recovery.

SYSOPER

A special database administration role that permits a database administrator to
perform STARTUP, SHUTDOWN, ALTER DATABASE OPEN/MOUNT, ALTER DATABASE
BACKUP, ARCHIVE LOG, and RECOVER, and includes the RESTRICTED SESSION
privilege.

tnsnames.ora

A file that contains connect descriptors mapped to net service names. The file can be
maintained centrally or locally for use by all or individual clients.

transaction identifiers (XIDs)

Identifies the client computer from which a transaction originated.

transaction identifiers (XIDs)

Glossary-4

Index-1

Index

A
administrator username

dropping, 6-4
Microsoft Transaction Server, 3-4

C
Component Object Model (COM)

marking components as transactional, 1-1
programming with Oracle Call Interface and

Microsoft Transaction Server, 4-6
registering in a Microsoft Transaction Server

environment, 4-4
running in a Microsoft Transaction Server

coordinated transaction, 4-4
running in an MS DTC-coordinated

transaction, 4-5
using with Microsoft Oracle ODBC Driver, 4-18
using with the Oracle ODBC Driver and Microsoft

Transaction Server, 4-17
computer on which Microsoft Transaction Server is

installed
installation requirements, 2-1

computer on which Oracle Database is installed
installation requirements, 2-2

configuration requirements
modifying for Oracle Fail Safe, 3-6
on client computer, 3-1
on computer on which Microsoft Transaction

Server is installed, 3-1
on computer on which Oracle Database is

installed, 3-1
connection

managing connection pooling, 5-1
connection attribute

setting with ODBC, 4-17
connection pooling

client side registry parameters, 5-1
emptying connection pools, 6-2
managing connections, 5-1
obtaining service handles, 4-9
releasing connections, 4-11
using OraMTSSvcGet() function, 4-9

CREATE SESSION role, 3-4

D
Data Manipulation Language (DML)

using in shared server configurations, 6-3
database job-queue processes

starting, 3-3
DBMS_JOBS package, 3-4
DBMS_TRANSACTION package, 3-4
DCOM. See Distributed Component Object Model

(DCOM)
differences with OraMTSJoinTxn() function, 4-13
Distributed Component Object Model (DCOM), 1-1
distributed transactions

in-doubt, 6-4
RAC support, 1-2
support for serializable isolation level, 1-3

DML. See Data Manipulation Language (DML)

E
Enterprise Services, 1-2

F
FORCE_ANY_TRANSACTION privilege, 3-4

G
getting started

with Microsoft Transaction Server and an Oracle
Database, 1-3

I
in-doubt transactions

JOB_QUEUE_PROCESSES initialization
parameter, 3-3

resolving, 3-1
scheduling automatic recovery, 3-2
starting database job-queue processes, 3-3
viewing, 3-6

initialization parameters
JOB_QUEUE_PROCESSES, 3-3
PROCESSES, 5-3
SESSIONS, 5-3

installation
of Oracle MTS Recovery Service, 2-1

Index-2

installation requirements
for computer on which Microsoft Transaction

Server is installed, 2-1
for computer on which Oracle Database is

installed, 2-2
for computer running Oracle Fail Safe, 2-1
Microsoft Transaction Server, 2-1
Oracle Database Client, 2-1
Oracle Objects for OLE, 2-1
Oracle ODBC Driver, 2-1
Oracle Services for Microsoft Transaction

Server, 2-1
required RAM, 2-1
Service Pack 5.0 or greater, 2-2
SQL*Plus, 2-2

J
JOB_QUEUE_PROCESSES initialization

parameter, 3-3

L
local transactions

promoting, 1-2

M
Microsoft Distributed Transaction Coordinator

(DTC), 1-2
Microsoft Distributed Transaction Coordinator (MS

DTC)
COM components running in an MS

DTC-coordinated transaction, 4-5
in a cluster, 3-6
starting, 5-4
using with Oracle Service for MTS, 2-1

Microsoft Transaction Server
benefits, 1-1
changing the administrator username, 3-4
COM components running in a transaction, 4-4
components running in an MS DTC-coordinated

transaction, 4-5
creating the administrator user account, 3-4
definition, 1-1
getting started with an Oracle Database, 1-3
installation requirements, 2-1
integration with an Oracle Database, 1-1
programming with Microsoft Oracle ODBC

Driver, 4-16
programming with Oracle Call Interface, 4-6
programming with Oracle ODBC Driver, 4-16
registering COM components, 4-4
scheduling transaction recovery, 3-2
starting MS DTC, 5-4
using with Microsoft Oracle ODBC Driver, 4-18
using with the Oracle ODBC Driver, 4-17

MTSSamples.dsn file
using with the Oracle ODBC Driver, 4-17

mtssys username
changing the password, 3-4

default administrator user account, 3-4
mtxstop.exe file

running, 6-2

N
net service name

changes that impact connection pool, 6-2
changes that impact connection pooling, 6-2

.NET, Enterprise Services, 1-2
nonpooled Oracle Call Interface connection

OraMTSJoinTxn function, 4-15

O
OCI_THREADED flag

passing, 4-6
OCIInitialize function

calling, 4-6
ODBC. See Open Database Connectivity (ODBC)
omtssamp.sql script, 4-18
Open Database Connectivity (ODBC)

configuring Microsoft Oracle ODBC Driver with
Microsoft Transaction Server, 4-18

configuring the Oracle ODBC Driver with
Microsoft Transaction Server, 4-17

Oracle ODBC Driver installation
requirements, 2-1

programming with Microsoft Transaction
Server, 4-16

setting the connection attribute, 4-17
using Microsoft Oracle ODBC Driver with

Microsoft Transaction Server, 4-18
using the MTSSamples.dsn file with the Oracle

ODBC Driver, 4-17
using the Oracle ODBC Driver with Microsoft

Transaction Server, 4-17
using the SQL_ATTR_ENLIST_IN_DTC

parameter, 4-17
using the SQLSetConnectAttr function, 4-17

Oracle Call Interface (OCI)
enlisting an MS DTC-coordinated

transaction, 4-11
obtaining pooled or standard Oracle Call Interface

connections, 4-12
obtaining pooled Oracle Call Interface

connections, 4-10
OraMTSEnlCtxGet() function, 4-13
OraMTSEnlCtxGet() function parameters, 4-13
OraMTSJoinTxn() function, 4-15
OraMTSOCIErrGet() function, 4-16
OraMTSOCIErrGet() function parameters, 4-16
OraMTSSvcEnlist() function, 4-11
OraMTSSvcEnlist() function parameters, 4-12
OraMTSSvcGet() function, 4-9
OraMTSSvcGet() function parameters, 4-9
OraMTSSvcRel() function, 4-11
programming with Microsoft Transaction

Server, 4-6
releasing pooled Oracle Call Interface

Index-3

connections, 4-11
Oracle Database

changing init.ora file parameter settings, 5-3
integration with Microsoft Transaction server, 1-1

Oracle Database Client
installation requirements, 2-1

Oracle Fail Safe
installation requirements, 2-1
modifying registry parameters, 3-6

Oracle MTS Recovery Service
installation, 2-1
resolving in-doubt transactions, 3-1
trace file output, 6-2

Oracle Objects for OLE (OO4O)
installation requirements, 2-1

Oracle Service for MTS
using with MS DTC, 2-1

Oracle Services for Microsoft Transaction, 3-1
Oracle Services for Microsoft Transaction Server

installation requirements, 2-1
oramts_2pc_pending

views, 3-5
ORAMTS_ABORT_MODE, 5-4
ORAMTS_CFLG_ALLDEFAULT flag

description, 4-10
ORAMTS_CFLG_SYSDBALOGN flag

description, 4-10
using, 4-10

ORAMTS_CFLG_SYSOPRLOGN flag
description, 4-10
using, 4-10

ORAMTS_CONN_POOL_TIMEOUT registry
parameter, 5-2

ORAMTS_ENFLG_DEFAULT flag
description, 4-12, 4-13

ORAMTS_NET_CACHE_MAXFREE registry
parameter, 5-2

ORAMTS_NET_CACHE_TIMEOUT registry
parameter, 5-2

ORAMTS_OSCREDS_MATCH_LEVEL registry
parameter, 5-2

oramtsadmin.sql script
creating the Microsoft Transaction Server

administrator user account, 3-4
creating the PL/SQL package, 3-4

oramts.dll file
definition, 6-1

OraMTSEnlCtxGet() function
Oracle Call Interface function, 4-13

OraMTSEnlCtxRel() function
destroying a previously set up enlistment

context, 4-14
parameters, 4-14
returning ORAMTSERR_NOERROR, 4-14
syntax, 4-14

ORAMTSERR_ILLEGAL_OPER
returning upon acquiring a connection, 4-13

ORAMTSERR_ILLEGAL_OPER returning upon
acquiring a connection, 4-13

ORAMTSERR_NOERROR

returning upon acquiring a connection, 4-12, 4-15
returning upon obtaining a connection, 4-10
returning upon releasing a connection, 4-11

OraMTSJoinTxn() function
enlisting a nonpooled Oracle Call Interface

connection, 4-15
Oracle Call Interface function, 4-15
returning ORAMTSERR_NOERROR upon

acquiring a connection, 4-15
syntax, 4-15

OraMTSOCIErrGet() function
parameters, 4-16
retrieving the Oracle Call Interface error

code, 4-16
syntax, 4-16

OraMTSSvcEnlist() function
enlisting pooled or standard Oracle Call Interface

connections, 4-12
Oracle Call Interface function, 4-11
ORAMTS_ENFLG_DEFAULT flag, 4-12, 4-13
parameters, 4-12
restrictions on use, 4-11
returning ORAMTSERR_NOERROR upon

acquiring a connection, 4-12
syntax, 4-12

OraMTSSvcEnlistEx() function
restrictions on use, 4-12
returning ORAMTSERR_ILLEGAL_OPER upon

acquiring a connection, 4-13
syntax, 4-12

OraMTSSvcGet() function
Oracle Call Interface function, 4-9
ORAMTS_CFLG_ALLDEFAULT flag, 4-10
ORAMTS_CFLG_SYSDBALOGN flag, 4-10
ORAMTS_CFLG_SYSOPRLOGN flag, 4-10
overview, 4-6
parameters, 4-9
responsibilities, 4-9
returning a pooled connection, 4-10
returning ORAMTSERR_NOERROR upon

acquiring a connection, 4-10
syntax, 4-9

OraMTSSvcRel() function
Oracle Call Interface function, 4-11
overview, 4-6
releasing a pooled connection, 4-11
returning ORAMTSERR_NOERROR upon

releasing a connection, 4-11
syntax, 4-11

OraMTSTransTest() function
syntax, 4-15

ORAOCI registry parameter
setting, 4-18

P
packages

DBMS_JOBS, 3-4
DBMS_TRANSACTION, 3-4

passwords

Index-4

changing for mtssys username, 3-4
pooled connection

releasing, 4-11
privileges

FORCE_ANY_TRANSACTION, 3-4
of administrator user account, 3-4
utl_oramts.sql script, 3-4

PROCESSES initialization parameter
changing the value, 5-3

programming methods
optimizing to improve performance, 5-1

promotable local transactions, 1-2
prvtoramts.plb file, 3-3
public procedures

exposing, 3-4
recover_automatic, 3-5
show_indoubt, 3-5
utl_oramts.forget_RMs, 3-5

R
Real Application Clusters (RAC), 1-2
recover_automatic

public procedure, 3-5
recovery

of in-doubt transactions, 3-1
registry

modifying values for Oracle Fail Safe
configurations, 3-6

trace file settings, 6-1
registry parameters

modifying for Oracle Fail Safe, 3-6
ORAMTS_CONN_POOL_TIMEOUT, 5-2
ORAMTS_NET_CACHE_MAXFREE, 5-2
ORAMTS_NET_CACHE_TIMEOUT, 5-2
ORAMTS_OSCREDS_MATCH_LEVEL, 5-2

registry variables
ORAMTS_ABORT_MODE, 5-4

roles
CREATE SESSION, 3-4
of administrator user account, 3-4
SELECT_CATALOG_ROLE, 3-4

S
SELECT_CATALOG_ROLE role, 3-4
serializable transactions, 1-3
service handles, 4-9
Service Pack 5.0 or greater

installation requirements, 2-2
SESSIONS initialization parameter

changing the value, 5-3
shared server configurations, 6-3
show_indoubt

public procedure, 3-5
SQL*Plus

installation requirements, 2-2

T
three-tiered architecture, 1-1

tnsnames.ora file
setting for shared server configurations, 6-3

trace files
filename conventions, 6-1
Oracle MTS Recovery Service, 6-2
oramts.dll, 6-1
registry settings, 6-1
using, 6-1

transaction recovery
JOB_QUEUE_PROCESSES initialization

parameter, 3-3
Oracle Fail Safe environment, 3-1
overview, 3-1
scheduling, 3-2
starting database job-queue processes, 3-3
troubleshooting, 3-6

transactions
ensuring consistency across data resources, 1-2

transparent RAC support of distributed
transactions, 1-2

troubleshooting
correcting Oracle Net changes that impact

connection pooling, 6-2
dropping the administrator user account, 6-4
starting MS DTC, 5-4
transaction recovery, 3-6
using trace files, 6-1

tuning
change, 5-3
managing connection pooling, 5-1

two-phase commit protocol, 6-4

U
utl_oramts PL/SQL package

exposing public procedures, 3-4
utl_oramts.forget_RMs

public procedure, 3-5
utl_oramts.sql script, 3-3

privileges and roles granted, 3-4

V
views

oramts_2pc_pending, 3-5

	Contents
	Preface
	What's New in Oracle Services for Microsoft Transaction Server
	1 Using Microsoft Transaction Server with Oracle Database
	Microsoft Transaction Server Overview
	Microsoft Transaction Server and Oracle Integration Overview
	Oracle Services for Microsoft Transaction Server Support for DTC
	Distributed Transactions on Real Application Clusters (Oracle RAC)
	Promotable Local Transactions
	Read-Committed and Serializable Transactions

	Getting Started with Microsoft Transaction Server and Oracle

	2 Installing and Migrating Oracle Products
	Installing Oracle Services for Microsoft Transaction Server
	Installation Requirements for Microsoft Transaction Server
	Installation Requirements for Oracle Database

	3 Managing Recovery Scenarios
	Microsoft Transaction Server Configuration Requirements
	Microsoft Transaction Server Transaction Recovery Overview
	Scheduling Automatic Microsoft Transaction Server Transaction Recovery
	Creating an Access Control List (ACL)
	Configuring Automatic Transaction Recovery

	Viewing Microsoft Transaction Server In-Doubt Transactions
	Modifying Registry Values for Oracle Fail Safe Configurations

	4 Programming with Microsoft Transaction Server and an Oracle Database
	COM Component Integration in a Transaction
	Microsoft Transaction Server Application Development
	Microsoft Transaction Server Component Registration
	Microsoft Transaction Server-Coordinated Component Transaction
	Microsoft DTC-Coordinated Component Transaction

	OCI Integration with Microsoft Transaction Server
	Integrating COM Components
	Using OCI Functions
	OraMTSSvcGet()
	OraMTSSvcRel()
	OraMTSSvcEnlist()
	OraMTSSvcEnlistEx()
	OraMTSEnlCtxGet()
	OraMTSEnlCtxRel()
	OraMTSJoinTxn()
	OraMTSTransTest()
	OraMTSOCIErrGet()

	ODBC Integration with Microsoft Transaction Server Overview
	Setting the Connection Attribute
	Using Oracle ODBC Driver
	Using Microsoft Oracle ODBC Driver

	5 Tuning Microsoft Transaction Server Performance
	Improving Microsoft Transaction Server Application Performance
	Managing Microsoft Transaction Server Connections
	Connection Pooling Registry Parameters

	Increasing the Transaction Timeout Parameter
	Changing Initialization Parameter Settings
	Additional Parameters
	Starting MSDTC

	6 Troubleshooting Oracle Microsoft Transaction Server
	Tracking OraMTS Performance
	Correcting Oracle Net Changes that Impact Connection Pooling
	Designing an Application that Uses Multiple Databases
	Working with Different Types of Connection Pooling
	Working with In-Doubt Transactions
	Dropping the Microsoft Transaction Server Administrative User Account

	Glossary
	Index
	A
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

