ORACLE

Oracle® Database
Globalization Support Guide

11gRelease 2 (11.2)
E10729-06

October 2010

Oracle Database Globalization Support Guide, 11g Release 2 (11.2)
E10729-06

Copyright © 1996, 2010, Oracle and/ or its affiliates. All rights reserved.
Primary Author: Paul Lane

Contributors: ~ Dan Chiba, Winson Chu, Claire Ho, Gary Hua, Simon Law, Geoff Lee, Peter Linsley,
Qianrong Ma, Keni Matsuda, Meghna Mehta, Valarie Moore, Cathy Shea, Shige Takeda, Linus Tanaka,
Makoto Tozawa, Barry Trute, Ying Wu, Peter Wallack, Chao Wang, Huaging Wang, Simon Wong, Michael
Yau, Jianping Yang, Qin Yu, Tim Yu, Weiran Zhang, Yan Zhu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PIREIACE ...ttt XV
TNEENAEA ATUAIEIICE.....eveeeeeceeeeeeeeee ettt et ettt e et et e teeetaeeeaeeeaeeetveeetseeaseesteeesseenssenseeenssenseeens XV
Documentation AcCesSSIDILityccciiiiiiiiiiiiiii e XV
Related DoOCUMENEATIONcveivieiieieerieteete ettt ettt ettt ete et eteeteeeveete e beerseeseesseeseesseeseensenseessenseeseens XVi
CONVEINEIONS ...eeieitiiieiiieeetie e ettt ettt e et e eett e e e eteeeetaeeeetaeeeeteeaeesseseessaeessaseensaeeeassseeasseseesssseassseeasseseessseeaseaann XVi

What's New in Globalization SUPPOIt? ... XXi
Oracle Database 11g Release 2 (11.2) New Features in Globalization............ccccccevveiiiniininnninns XXi
Oracle Database 11g Release 1 (11.1) New Features in Globalizationccccccceeciiiiiiiiiiinnnns XXi

1 Overview of Globalization Support

Globalization Support Architecture................ccccooiiiiiiiiiii s 1-1
Locale Data 0n Demandccccveieiirerienieieieieietee sttt ettt tesesseesessassessessessessessassesassensens 1-1
Architecture to Support Multilingual Applications...........cccoceviioiieiniiiiiic e, 1-2
Using Unicode in a Multilingual Database ... 1-3

Globalization SUPPOrt FEAtUTESccccooviiiriiiiiiiciiccee e 1-4
Language SUPPOTt.......coiiiiiiiiiieccce s 1-4
TerTItOrY SUPPOIL ..o 1-5
Date and Time FOIMALSccveoieiiriieiericceeeeeteeetese ettt te e etesseesaesreesae e essesssessassaessesssessessenses 1-5
Monetary and Numeric FOrmats ..., 1-5
Calendar SYSTEIMISc.cucuiiiiiiiiiiiiciiir s 1-5
LiNGUistiC SOTHIINE ...voveviviviriiiiiiiiiciciceiei s 1-6
Character Set SUPPOTt.......ccccviiiiiiiiiiii s 1-6
Character SEIMANTICS.cveivieieeieeieere et ere ettt et e e teetbeereebesteeaseeseestesseessesseensesssenseessenseseessenseeneas 1-6
Customization of Locale and Calendar Datacccoccvevieeieriinieniiceeieceee e 1-6
UNIicOde SUPPOTL ..o 1-7

2 Choosing a Character Set

Character Set ENCOAINGccooiiiiiiiiiii s 2-1
What is an Encoded Character SEt?.........cuiieiiiciicieeieceeieere ettt ettt ere v e eae e ve s 2-1
Which Characters Are ENCOA@d?c.oooiiruieiiiieieiieieceeeeeteeee ettt ae e e esaesre e seens 2-2

Phonetic Writing SyStems...........coocioiiiriiieicc e 2-3
Ideographic Writing SyStEmS........c.ccceuiuiiiiiiiiiiiiiiiicicicc e 2-3
Punctuation, Control Characters, Numbers, and Symbols............cccccoeiriiiniiiiininnns 2-3
WING DIT@CHON ..ttt 2-3

What Characters Does a Character Set SUPPOIT?ccviiiiiiiiiiiiiiccs 2-3

ASCIL ENCOING ...ttt 2-4

How are Characters Encoded? ..., 2-6
Single-Byte Encoding SChemes ..o 2-7
Multibyte Encoding Schemes............cccccociiiiiiiiiiiiiniiiicinns 2-7
Naming Convention for Oracle Database Character Sets..........c.cccccoceeuiicicincceeeeeeeenes 2-8
Length Semantics ... s 2-8
Choosing an Oracle Database Character Set..............ccccccooiiiiiiiiiiiiiia 2-10
Current and Future Language Requirements...........ccccccocvvviiiiininiiinniniiccccee 2-11
Client Operating System and Application Compatibility.........ccccoceeviiiiiiiiiiiiiin, 2-11
Character Set Conversion Between Clients and the Server ..., 2-12
Performance Implications of Choosing a Database Character Set............cccccccceucciiiinnnnnnne. 2-12
Restrictions on Database Character Sets............ccoooviiiiiiiiiiii 2-12
Restrictions on Character Sets Used to Express Names.........cccooooiiiiiiiiiniciiiicccicne, 2-12
Database Character Set Statement of Direction............ccoveviviiiiiiiiiiiceec, 2-13
Choosing Unicode as a Database Character Setcooooiiiiiiiieiiiiice, 2-13
Choosing a National Character Set..............cooiiiiiic e 2-14
Summary of Supported Data TYPES......ccccceiuimiiiiiiiiiiiceiiccceee s 2-14
Changing the Character Set After Database Creation...............c.cccoooiiiiiiiiiiiiia 2-15
Monolingual Database SCeNarioccccocouvvviiiiiiiiiiiiiii 2-15
Character Set Conversion in a Monolingual Scenarioccccccevvvvnrnnnvrnnesnneeeenes 2-16
Multilingual Database Scenarios.............cccocociiniiiiiiiiiiiiii s 2-17
Restricted Multilingual SUPPOTtcoouoiiii 2-17
Unrestricted Multilingual SUPPOTtcccccciiiiiiiiiiiiccccre s 2-18

3 Setting Up a Globalization Support Environment

Setting NLS Parameters ..o 3-1
Choosing a Locale with the NLS_LANG Environment Variable..............c.ccccccoooiniinninnn. 3-3
Specifying the Value of NLS_LANG.........ccccccoviiiiiiiiiiiiiinn s 3-5
Overriding Language and Territory Specificationsccoeocciiciieiicececcceeeeenenennes 3-6
LOCALE VATIANTS ...ouviviiiieiieieeiceeteste ettt sttt e st et e e esbeesaesaeesaesaeesaesseessesseessensasssensenssensesses 3-6
Should the NLS_LANG Setting Match the Database Character Set?.............ccccccoeeiiiiicnnes 3-8
Character Set Parameter..........c.ccooveiieiiieieieeeee et see sttt e et e s e st essesseessessaessesssenseessensesnsensennes 3-8
NLS_OS_CHARSET Environment Variableoooveoiiiiooiiiiieeiieeeeeeee e 3-8
NLS Database Parameters...........c.occooviiiiiiieiiioiieieeieeee et ete ettt teesesteesseereesesseesesssensesasessesssessesseens 3-8
NLS Data Dictionary VIEWS.......cccciviviiiiiiiiiiic e 3-9
NLS Dynamic Performance VIEWSccourueiiiiiiieiiiicieec it 3-9
OCINISGEINFO() FUNCHION «.oveuitiniiiiiiietetet ettt ettt ettt sttt ettt 3-9
Language and Territory Parameters ..o 3-9
INLS_LANGUAGE ...ttt ettt sttt et e e sta et e ssaesae e essessaessessaessesssessesssensesseensesseessessees 3-9
NLS_TERRITORY ...oeotietieiietieieeteete ettt et st et teeteeteeteeseestesseessessseseessesseessensesssensessseesesnsensesseas 3-12
Overriding Default Values for NLS_LANGUAGE
and NLS_TERRITORY During a SeSSioncccceeeeiiiiirieieiiiiieicicceeeeeeeeeseeennens 3-14
Date and Time ParametersS..........ccoooocviiviiiiiiiiiiiiciecieeeeteereete ettt ettt et sae e e be s s ste s eseessenseersenseenes 3-15
DAt FOTINMALS ...c..eiieetieiieieieeee ettt ettt et et et e sae et e sse e sesse e sesseensesseensesneensesneensennean 3-15
NLS_DATE_FORMAT ..ottt ettt ettt et sveeaesseesaesaaessesssessassaessasssensesssessensns 3-16
NLS_DATE_LANGUAGE ...ttt ettt ettt sve et sve e be b ve e reeans 3-17

B B8 TSl S0) s o V=1 £ USROSt 3-18

NLS_TIMESTAMP_FORMAT ..ottt ettt sttt sttt est v eae b sbesnens 3-19
NLS_TIMESTAMP_TZ_FORMAToootiteieietetetetetettee ettt s e essesaesessessasassens 3-19
Calendar Definitionscocviiiieiiiiieiieiete ettt e ste e e e b e e aesreesaesseessesseessassaessesseessesseensenses 3-20
CaleNdar FOIMALSccuviiiieieiiciecie ettt ettt ettt et ve et s e ebeeee e be s s besbeessesseessesseessesseensesrsensenseas 3-20
First Day of the WEekKc.ccciiiiiiiiiiiiiiiccccc s 3-21

First Calendar Week Of the YEarcvevuieieviiiieececeeeeee ettt 3-21
Number of Days and Months in a Year..........c.cccooiiiiic 3-22

FArSt YEAT Of EI@..uiciiiiiiieieieiicieeetet ettt e st b e sb b e s e s essesbesaeseeseesansassens 3-22
INLS_CALENDAR.....c.oot ettt ettt ettt eteste st e s eseeresteetaesessessassessassessessessessassassessesessessessensas 3-22
Numeric and List Parameterscccocuveviiiiieiiiiieiicieteeiete ettt sttt eesbe s ae e e reernesaeens 3-23
INUMETIC FOTIMALS ..vviiieiieieeiiee ettt ettt ettt e s e et esseensesneensesneensenneen 3-23
NLS_NUMERIC_CHARACTERS....c..cotititeeete ettt sttt ettt s 3-24
INLS_LIST_SEPARATOR ...ccutiiteieieitettet sttt sttt ettt ettt sttt be sttt st ettt et et ese et eaeeaeeaas 3-25
Monetary Parameters..............ccooiiiiiiiiiiiii s 3-25
Currency FOIMAtSc.ovvieiciic 3-25
INLS_CURRENCY ...ttt ittt sttt st ettt et et ea e st ebe st e et e sbessesse s et et estenteseeseeseebessessenean 3-26
INLS_ISO_CURRENQ Yoouteiieiieiieeieeieiisesestestestesiestetestetestessesessessessessessessessessessessessessessssessesseses 3-27
NLS_DUAL_CURRENCQCY ..ottt sttt et es bt sbe bbb sae s 3-28
Oracle Database Support for the BUIOcccouoiii 3-28
NLS_MONETARY_CHARACTERS ...ttt sttt aeaesaese et e s s sessessennes 3-29
INLS_CREDIT ..ottt ettt ettt e et et se e st eseeseetaetaebesbassesbessessassessessasssssessssessensessessansas 3-29
INLS_DEBIT ...ttt ettt ettt ettt ettt ettt et teeaeeve e beesa e besssesbeessesbeessassaessasseassesseessesssensenseas 3-30
Linguistic Sort Parameters................ccccoooviviiiiiiiiiiii 3-30
INLS_SORT ...ttt tete st e e steeste st et e e ta e s aeseesesssessessaessesssessesssessesssansaessenseessenseessesssessensens 3-30
INLS_COMP....o ottt ettt ettt et ettt e te e tesre e b e e st esbeessesbesssesseessanseessanseesseseessesseensenseas 3-31
Character Set Conversion Parameter.............cooivieiieieriieieeeeeeeese ettt se e se e s ens 3-32
NLS_NCHAR_CONV_EXCP ...ttt ettt ettt sttt sttt ettt et st b e saesnes 3-32
Length Semantics ... 3-32
NLS_LENGTH_SEMANTICS ...ttt etee e sre st ssessessese s saesaessesesssssassessessenses 3-32

Datetime Data Types and Time Zone Support

Overview of Datetime and Interval Data Types and Time Zone Support.............ccccccevvvviinnnee 4-1
Datetime and Interval Data TYPescccoviiiiniiiiiiiii s 4-1
Datetime Data TYPESccccueuiiiiiiiiiiiicc e 4-2
DATE Data TYPE ..cooiiiiiiiiiiiiiiici s 4-2
TIMESTAMP Data TYPec.cvoviviiiiiiiiiicicicieeccccec s 4-3
TIMESTAMP WITH TIME ZONE Data TYPeccceceuiuiiiiiiiiiiiiiicicicicicicicireciceeeeeeeieeas 4-4
TIMESTAMP WITH LOCAL TIME ZONE Data Typeccocoviiininiiiinicicceee, 4-5
Inserting Values into Datetime Data Typescccooovoiiiiiiiiiiiiciicce 4-6
Choosing a TIMESTAMP Data TYPecccccceuvuriiiniiiiiniiiiiiiiicicnnrinicnesss s 4-9
Interval Data TYPES......coouviiiiiiiiiiii e 4-9
INTERVAL YEAR TO MONTH Data Type.......cccccoovurininiiiiiiiiiciciieceeeeeeeenes 4-10
INTERVAL DAY TO SECOND Data TYpe.....ccccceueueiiiiiiiiiciiiicicicicicicieeeeeieesieeeeies 4-10
Inserting Values into Interval Data TYPes.......cccccceeueueirniiiicnrrcrrrecereeeeereeeeecnes 4-10
Datetime and Interval Arithmetic and CompariSOnNS.........c..cccoeeveerueinecenenenenneeeereseneneenes 4-11
Datetime and Interval ArithmetiC.......c.ccoovieiiiciniiiiiicccce s 4-11

Datetime COMPATISONSccvuiviiiuiiiiiiitiieicieieei e 4-11

Explicit Conversion of Datetime Data Types........cccoovoeririiiiiiiieieccc 4-12
Datetime SQL FUNCHONScccoooiiiiieiecie ettt e e v e e stee b e esreesaseebeessseeseeseseensaenseeas 4-12
Datetime and Time Zone Parameters and Environment Variablesc.ccccoooviinnnn 4-14

Datetime Format Parameters............cooeivieiiiiiniiiiciicccc s 4-14

Time Zone Environment Variables.............ccccooiiiiiniiiiiie, 4-15

Daylight Saving Time Session Parameter............ccocouoiieeiiiiciiieiccece 4-15

Daylight Saving Time Upgrade Parameterccccoovriieiiiiiiieiicicceee 4-15
Choosing a Time Zone File.............cccccovniiiiiiii s 4-16
Upgrading the Time Zone File and Timestamp with Time Zone Data..............cccccccevvinnnnn. 4-18

Daylight Saving Time (DST) Transition Rules Changes ..o, 4-18

Preparing to Upgrade the Time Zone File and Timestamp with Time Zone Data 4-19

Steps to Upgrade Time Zone File and Timestamp with Time Zone Data........c.ccccceceuvuennenne. 4-20

Example of Updating Daylight Saving Time Behaviorccccoooii 4-21

Error Handling when Upgrading Time Zone File and Timestamp
with Time Zone Data.........oiiiiiiiiiiiic s 4-26
Clients and Servers Operating with Different Versions of Time Zone Files 4-27
Setting the Database Time Zomne ... s 4-28
Setting the Session Time ZOome ... 4-28
Converting Time Zones With the AT TIME ZONE Clause............ccccccceiiiiiiiiiiniiiiienennas 4-29
Support for Daylight Saving Timeccccoiiiiiiiiii 4-30
Examples: The Effect of Daylight Saving Time on Datetime Calculations............cccccceeeue.. 4-31

Linguistic Sorting and String Searching

Overview of Oracle Database Sorting Capabilitiesc.cccoooviiiiiniii 5-1
USINg BINary SOIES ..ot 5-2
Using Linguistic SOTES ... 5-2
Monolingual LinGUistic SOIScoiriiiiiiiieiiicie e 5-2
Multilingual Linguistic SOTESoouiiiiiuiieieiiciee et 5-3
Multilingual Sorting LeVelscccociiiiiiiiiiiicccececeeeee e 5-4
Primary Level SOItScoiiiiiiiieeec e 5-4
Secondary Level SOTTS ... 5-4
Tertiary LeVel SOTES.......cooviiiiiiiiicccece e 5-4
Linguistic Sort FEatures............ccoooiiiiiiiiic s 5-5
Base LEttOr'Scvoiiiiiiiiicic s 5-5
Ignorable Characters..........cccciiiiiiiiiccece e 5-6
Contracting CharacCters...........covuiueieiiiiiiieicci e 5-6
Expanding Characters ... 5-6
Context-Sensitive Characters............couiiiiiiiiii e 5-6
Canonical EQUIVAIENCEooiiiiiiiiiiiiii 5-7
Reverse Secondary SOTHNGccccciiiiiiiiiiiiiiiic e 5-7
Character Rearrangement for Thai and Laotian Characters............cccccocccecciccciccccceenenes 5-8
SPECIAl LOttEISevviiiitti s 5-8
Special Combination Letters. ... 5-8
Special Uppercase LEtErscccocuiiiiiiiiiirieiriiiicrieeecceeee et 5-8
Special LoWercase Letters ... 5-8

Case-Insensitive and Accent-Insensitive Linguistic Sorts.............cccooooiii 5-9

Examples of Case-Insensitive and Accent-Insensitive SOrts..........cccoooeveiiiiciciiiiceicnen, 5-10

Specifying a Case-Insensitive or Accent-Insensitive SOrt..........cccccevviniiiiiiiiiiiiiiiiiie, 5-11
Linguistic Sort EXamples..........ccccoviiiiiiiiiiiiii s 5-12
Performing Linguistic COMPATiSOMNSccocoiimiiiiiiiiiiiiiic e 5-13
COllation KeYS........oiieiiiiecicie it 5-15
Restricted Precision of Linguistic COMPATiSON.........cevueuiiriririririririrrrcrrereeeeeeeeeeeeeeeees 5-15
Linguistic Comparison EXamples...........ccccociiiiiiiiiiiiiniiies 5-15
Using Linguistic INdeXesccccccoviviiiiiiiiiiiiii s 5-17
Supported SQL Operations and Functions for Linguistic Indexes...........ccccoeevvrivrvnnnnne. 5-18
Linguistic Indexes for Multiple Languages...........ccccccouovrueieiiicieiiiiciciccc e 5-19
Requirements for Using Linguistic INA@XeSccrueuiiiiiiiiiiiiicecc e, 5-19
Set NLS_SORT ApPPropriatelyccccocciciiiiiiiiieciceeeeceeeeeieeseeeeeeeeeeeeeeeeseseeeeees 5-20

Specify NOT NULL in a WHERE Clause If the Column
Was Not Declared NOT NULL........cccocoiiiiiiiniiiiessc e 5-20
Example: Setting Up a French Linguistic INdeXcccccccoeeiiiiiiiiiiiiiiicciecceee 5-20
Searching Linguistic Strings ..o 5-20
SQL Regular Expressions in a Multilingual Environment...............cccccocoiiiiiiiiiiiiiinnn, 5-21
Character Range '[x-y]' in Regular EXpressions.........c.ccccccccieiiiiiicnieiicceecicciceeeeeeeneees 5-21
Collation Element Delimiter '[. .]' in Regular EXpressions...........cccccevivviiviiiininininininne, 5-22
Character Class '[: :]' in Regular EXpressions.........cccccoieieiiicieiiiiciccc s 5-22
Equivalence Class '[= =]' in Regular EXpressions...........cccccocvvvrirvnnnnnnnnnneccercecenes 5-22
Examples: Regular EXPIeSSIONSccccceiiiiiiiiiiiiiiiiiiiceiieec s 5-22

Supporting Multilingual Databases with Unicode

Overview of Unicode ... s 6-1
What is Unicode? ..o s 6-2
Supplementary Charactersc.ccccceiiuiciiieiiiiiieeeeeeeteeeereee e 6-2
Unicode ENCOAINGSviuiuiiiiiiiit s 6-2
UTE-8 ENCOAINGouviviiiiieteeci ettt 6-2

UCS-2 ENCOING ... 6-3

UTF-16 ENCOING ..ottt 6-3
Examples: UTF-16, UTF-8, and UCS-2 ENcoding..........ccccevuvivivinininninininniinnnccecncenn, 6-4
Support for Unicode in Oracle Database ... 6-4
Implementing a Unicode Solution in the Database...............cccccooviiiiiiiiii, 6-5
Enabling Multilingual Support with Unicode Databasesc.cccocvvvinrnnnnnnnnninninncn. 6-6
Enabling Multilingual Support with Unicode Data Types........cccccovvvvvrrnnnrnrrnccene. 6-7
How to Choose Between a Unicode Database and a Unicode Data Type Solution.................. 6-8
When Should You Use a Unicode Database?ccccoiiiiiiiiiiiiiiciiicciicicins 6-8

When Should You Use Unicode Data TYPes?ccoveiiririiiiiiiiiiirccccecceneeenenes 6-8
Comparing Unicode Character Sets for Database and Data Type Solutions...............cccceuevune. 6-9
Unicode Case STUAIScciiriiiiiiiiiiiiicce ettt 6-11
Designing Database Schemas to Support Multiple Languages..............cccooviivnniinninnnnnn, 6-13
Specifying Column Lengths for Multilingual Data............cccooieiiiiiiiiii, 6-13
Storing Data in Multiple Languagescccccccciiiiiiiiiiiiiiiiiniicccnrscnsesseees 6-14
Store Language Information with the Datac.cccccccociiiiiiiiiiiiccccceccee 6-14

Select Translated Data Using Fine-Grained Access Controlccccccvvviiviiininncinnnn, 6-14

Storing Documents in Multiple Languages in LOB Data Types........ccccocooveeiniiccininicccnennn. 6-15

vii

Creating Indexes for Searching Multilingual Document Contentsc.cccocoeveveviviiinnnnnn 6-16

Creating MUIIEXETSorueiiiicic s 6-16
Creating Indexes for Documents Stored in the CLOB Data Typecccccocevevvvrerrcecnnes 6-17
Creating Indexes for Documents Stored in the BLOB Data Type.......c.ccccoooeueiniiiniinninnes 6-17

7 Programming with Unicode

Overview of Programming with Unicodeccccoooiiiiiii 7-1
Database Access Product Stack and Unicodecooiiiiiiiiiii e, 7-1
SQL and PL/SQL Programming with Unicode..............cccoccooiiniiinics 7-3
SQL NCHAR Data TYPeS.....c.covuiueieiiiiieieieicicie it 7-4
The NCHAR Data TYPE ..cccuviiiiiiiiiiieiciiiieirri e 7-4

The NVARCHAR2 Data TYPE .ooveviveiririiiiicreecceceess e 7-4

The NCLOB Data TYPeccuoiiirieiiicietei i e 7-5
Implicit Data Type Conversion Between NCHAR and Other Data Typesccccoeueueinneen. 7-5
Exception Handling for Data Loss During Data Type Conversion..........cccccccceeucueunueueueunicennnes 7-5
Rules for Implicit Data Type CONVEISIONcccoviuiiiuiuiiiiiiiiiieieiieieieiereeeeeree e 7-6
SQL Functions for Unicode Data TYPescccoeioiriiiiiiiiiieicciecc e 7-7
Other SQL FUNCHONS ...ccvvivievieiieteeete ettt ettt ettt ettt eete et e eteeaeeseesaeereessenseenseeseenseessensesseensas 7-8
Unicode String Literals.........ooeiiieiiiicieicce 7-8
NCHAR String Literal Replacement ... 7-9
Using the UTL_FILE Package with NCHAR Data........cccccccocieiiiiiiiiiiccccccecceenenees 7-10
OCI Programming with Unicode.............ccoooiiiiiiic e 7-10
OCIEnvNIsCreate() Function for Unicode Programmingccccooeoeueieioiceieiiicicieicecnen, 7-11
OCI Unicode Code CONVETSION.........ccoiuiriiiriiiiiriiiniieieiiscseises s 7-12
Data INteGTity.....ccoeviieieieieieieie s 7-12

OCI Performance Implications When Using Unicode............ccoooriiiniiriniiiiiiic 7-12

OCI Unicode Data EXPansionccccccceuieeuiieieieeieeeeieeieieeeeieeenenene e nesesenesenenens 7-13

Setting UTF-8 to the NLS_LANG Character Set in OCL...........ccccccevvvviiiinnnnii 7-14
Binding and Defining SQL CHAR Data Types in OCL..........ccccooouoiiiiiiiicieieceecc 7-14
Binding and Defining SQL NCHAR Data Types in OCIcccccccceeeriiiinniiccrecceeeees 7-15
Handling SQL NCHAR String Literals in OCT........c.ccooiiiiiiiiiic 7-16
Binding and Defining CLOB and NCLOB Unicode Data in OCIcccccceeviiivininnnnnne. 7-17
Pro*C/C++ Programming with Unicodecccooiiii, 7-17
Pro*C/C++ Data Conversion int UNICOAE.........oouviveuiiiiiiiiieieeeee e 7-18
Using the VARCHAR Data Type in Pro*C/CH+ ..c.coiiiiiiiiiiiccicceecceeceeees 7-18
Using the NVARCHAR Data Type in Pro*C/CH+ ..o 7-19
Using the UVARCHAR Data Type in Pro*C/C+ .o, 7-19
JDBC Programming with Unicode............ccccooviiiiiiiiii e 7-20
Binding and Defining Java Strings to SQL CHAR Data Types........cccccccccceeueiccicecccenenne 7-20
Binding and Defining Java Strings to SQL NCHAR Data Types........ccccocoeveriveniiiniiceiinnnnes 7-21
Using the SQL NCHAR Data Types Without Changing the Codeccccccccuviiriiinininnne 7-22
Using SQL NCHAR String Literals in JDBCcooviinnniiiiiccicccccccecccneenenes 7-23
Data Conversion in JDBCcc.coiiiiiiiiric ettt sttt sttt ettt sae s 7-23
Data Conversion for the OCI DIIVercccocvcivriiiiininiiciirneeetrreeeeseeereee e 7-23

Data Conversion for Thin DIivers ... 7-24

Data Conversion for the Server-Side Internal Driver ... 7-24

Using oracle.sql.CHAR in Oracle Object TYPeSsccooveuvireriiriiecieieiicieecceece e, 7-25

viii

oracle.SQLCHAR ..o 7-25

Accessing SQL CHAR and NCHAR Attributes with oracle.sql.CHARc.c........... 7-26
Restrictions on Accessing SQL CHAR Data with JDBC.......ccccccociiiiiiiiiciicceecceeee 7-27
Character Integrity Issues in a Multibyte Database Environmentccccccovviiiinnnes 7-27

ODBC and OLE DB Programming with Unicode...............cccocoooiiiiiiiis 7-28
Unicode-Enabled Drivers in ODBC and OLE DBcccccoviiviiiiiniiiceecne, 7-28
OCI Dependency in UniCode.........c.cuoiiuiiiiiiiicieiiiici s 7-28
ODBC and OLE DB Code Conversion in Unicode...........ccccevivivininiiiiiinnniiine 7-28
OLE DB Code CONVETISIONScvuiiiiiiiiiiiiiniiniicscne e sessnes 7-29

ODBC Unicode Data TYPescccceueiiuiieiiiiiicieiecci i 7-30
OLE DB Unicode Data TYPesccucuiiueiiiiiiicieieicecieei i 7-31
ADO ACCESSovvrrereieiete e s 7-31
XML Programming with Unicode............ccccooiiiiiiiiiiiis 7-32
Writing an XML File in Unicode with Javac.ccooii, 7-32
Reading an XML File in Unicode With Java ... 7-33
Parsing an XML Stream in Unicode with Javacccooiiiiiiiiiii, 7-33

Oracle Globalization Development Kit

Overview of the Oracle Globalization Development Kitcccccocovniiiniiii 8-1
Designing a Global Internet Application..............ccccooiiiiiniii, 8-2
Deploying a Monolingual Internet Applicationc.ccccccuceieeiiiiiiiniiccceecceeceeeeeenes 8-2
Deploying a Multilingual Internet Application............cc.couieieiiiiiiiiniiic e, 8-4
Developing a Global Internet Application ..., 8-5
Locale Determination ... 8-6
LOCAlE AWATENESS......ocviveieiiiiiicieiiicicee s 8-6
Localizing the CONtentcooiuiiiiiii e 8-7
Getting Started with the Globalization Development Kit..............ccooooiiiiii 8-7
GDEK QUICK STATLccueiiiieieciciceeesteet ettt e te et et e s e e st e e seesbesseessesseessesssessesssessenssensanssensesnes 8-9
Modifying the HelloWorld Applicationccoooeiieiiiiieieiicceccc e 8-10
GDK Application Framework for J2EE............c.cccoioiniiniiiiiceneeeeereeereeeseee e 8-16
Making the GDK Framework Available to J2EE Applicationscccccoeveveviiiciiriinninnennnn, 8-18
Integrating Locale Sources into the GDK Framework............ccoooeviiiiiiiiiiiiece, 8-19
Getting the User Locale From the GDK Framework ... 8-20
Implementing Locale Awareness Using the GDK Localizerccccoooviiiiiiiiiicininen, 8-21
Defining the Supported Application Locales in the GDK............cccccceeiiiiiiiiiiiiiiiiee 8-23
Handling Non-ASCII Input and Output in the GDK Frameworkccccccoeevvvvnnnnnene. 8-24
Managing Localized Content in the GDKc..coooiiiiiiiii e, 8-25
Managing Localized Content in JSPs and Java Servlets...........ccccceevvrvnnnnnnnnnnnnnes 8-26
Managing Localized Content in Static Files........ccccccoovrriiniiniiiiiicccrrecceeenes 8-27

GDK JaVa AP ... 8-28
Oracle Locale Information in the GDKccccoviiiiiiniiiiiniircceeece e 8-28
Oracle Locale Mapping in the GDKccccccciiiiiiiiiiicceeeeeeeeeeeeeeeeeee s 8-29
Oracle Character Set Conversion in the GDK ... 8-29
Oracle Date, Number, and Monetary Formats in the GDKccccooooiiiiiiii, 8-30
Oracle Binary and Linguistic Sorts in the GDK ... 8-31
Oracle Language and Character Set Detection in the GDK ..., 8-32
Oracle Translated Locale and Time Zone Names in the GDKccccccocoiiiiiiiniine 8-33

10

Using the GDK with E-Mail Programs ... 8-34

The GDK Application Configuration Filecccccocoviiiinnin 8-35
10Cale-ChaTrSEt-TNAPS.c.cucuieiiiiiieiiiciciccc et 8-36
PAGE-ChATSE ... 8-36
APPLicatioN-10CAles..........cviiiii 8-37
locale-determine-rule..........ccooviiiiiiiiiiii e 8-37
locale-parameter-NAame.........ccoiiuiiiiiiiiiiiic s 8-38
MESSAZE-DUNALESc.viieiii 8-39
UTI-TEWTIEE-TULE ..o 8-39
Example: GDK Application Configuration File..........ccccccocoeiiiiiiiiiiiiiici 8-40

GDK for Java Supplied Packages and Classes................ccccciuiiiiiiiiiiiiiiiiiceceenas 8-41
0TACIEILIBNICSA oo 8-41
OTACIEILBININE ...t s 8-42
OTACIEALIBNLSEIVIOL ... 8-42
OTACIEIIBIAEXE e 8-42
OTACIEILBNULIL ..o 8-43

GDK for PL/SQL Supplied Packages...............ccccoiiiiiiiiiiiiiiiiicccieeeenenennas 8-43

GDK EITOT IMIESSAZES ...ttt 8-43

SQL and PL/SQL Programming in a Global Environment

Locale-Dependent SQL Functions with Optional NLS Parameters............cccccceceveveneinncnnenennen. 9-1
Default Values for NLS Parameters in SQL FUNCLIONS........cccoecveviiecieniieieieceeieeeeieeeeee e 9-2
Specifying NLS Parameters in SQL FUNCHONS.........ccocoiiiiieieiiiiecci e 9-2
Unacceptable NLS Parameters in SQL FUNCHONSccceuiiieiiiiiiiiiiiccccccceeeceeeeennes 9-4

Other Locale-Dependent SQL FUNCLIONS ... 9-4
The CONVERT FUNCHOMN. ..ot 9-4
SQL Functions for Different Length Semanticscccocoeoeiiiiiiiiiiiiiciccceecceeeenenes 9-5
LIKE Conditions for Different Length Semanticsccccooiieiiiiiiiiiiic 9-6
Character Set SQL FUNCHONScc.ioiiiiieiieie ettt ettt et ere et e sae s e esbe s s essesreessesseessesseeneas 9-6

Converting from Character Set Number to Character Set Namec.cccccccoeeecciiennnns 9-6
Converting from Character Set Name to Character Set Number ..o, 9-6
Returning the Length of an NCHAR Column..........ccccceiiiiiiiiiniiiiiniiniinnnneenne 9-7
The NLSSORT FUNCHOINcovviniiiiiiiiiiici s 9-7
INLSSORT SYNAX ...ocurviviiiiicieieiinieie ettt 9-8
Comparing Strings in @a WHERE Clausecccccooviiiiiiiiiiiiccceeeeeeeeens 9-8
Using the NLS_COMP Parameter to Simplify Comparisons in the WHERE Clause....... 9-8
Controlling an ORDER BY Clause..........cccouieieiiiiiiiiiciccc e 9-9

Miscellaneous Topics for SQL and PL/SQL Programming in a Global Environment 9-9
SQL Date FOIMat IMASKScveevieiietiiiieteeieeete ettt eteeveereeveeteeeteereeaeesseseessessesssenseeseenseessesesssensas 9-9
Calculating Week NUMDETS.........oouiiiiiiiiei 9-10
SQL Numeric FOrmat MasKScoieiiiuiiiiiieeiecieeieeie ettt ettt e et eveete s e eeseereeeveensesseennas 9-10
Loading External BFILE Data into LOB Colummns.........c.cccoccieiiecieeiieeecceieeeenenenenens 9-10

OCI Programming in a Global Environment

Using the OCI NLS FUNCHONSccoiiiiiiiiiiiii s 10-1
Specifying Character Sets in OCI ... 10-2
Getting Locale Information in OCT ... 10-2

11

12

Mapping Locale Information Between Oracle and Other Standards...............c.cccoooorinni. 10-3

Manipulating Strings in OCL...........ccccccoviiiiiiiiiniiii s 10-3
Classifying Characters in OClccocoiiiiiiiiiii s 10-5
Converting Character Sets in OCl...............cocooiiiiiiiiii e 10-5
OCI Messaging FUNCHONSccouiiiiiiiiicccc s 10-6
Imsgen Utility........ccooiiiiiiii s 10-6
Character Set Migration
Overview of Character Set Migrationcccccoovviiiiiiiii 11-1
Data TIUNCATIONcovititiiieietetee e 11-1
Additional Problems Caused by Data Truncation...........cccooereiiiiicieniciiiecicciee 11-2
Character Set CONVErsion ISSUES............cccovuviiimiiiiiiii e 11-3
Replacement Characters that Result from Using the Export and Import Utilities......... 11-3
Invalid Data That Results from Setting the Client's
NLS_LANG Parameter INCOTTECELYc.cccceuiiiiriririiiiiiiiiciccecrccee s 11-4
Conversion from Single-byte to Multibyte Character Set and Oracle Data Pump 11-5
Changing the Database Character Set of an Existing Database............c.ccccccooiiiiiiiiinnnn, 11-6
Migrating Character Data Using a Full Export and Import..........cccccccecicvnninnninnnnne. 11-6
Migrating a Character Set Using the CSALTER Script......ccccovoiiiieiiiiiiiiiccce, 11-6
Using the CSALTER Script in an Oracle Real Application Clusters Environment........ 11-7
Migrating Character Data Using the CSALTER Script and Selective Imports 11-8
Migrating to NCHAR Data TYPes..........ccccccovviiiiiiiiiiiiiiiiccccs s 11-8
Migrating Version 8 NCHAR Columns to Oracle9i and Later..........c.cccooreiiiiiiiiinininnnnn, 11-8
Changing the National Character Set..........ccccccceiiiiiiiiiinrierreerereee s 11-9
Migrating CHAR Columns to NCHAR Columns.........ccoceiirieiiiicieecicsc s 11-9
Using the ALTER TABLE MODIFY Statement to Change
CHAR Columns t0 NCHAR COIUIMNScvuiiiiiiiieiiiiieiicneec e 11-9
Using Online Table Redefinition to Migrate a Large Table to Unicode 11-10
Post-Conversion Considerations After Character Set Migration..............cccccocoiiiiiinn 11-11
Character Set Scanner Utilities
The Language and Character Set File Scannercccccccoovviviiiinnnnnniiinnncccess 12-1
Syntax of the LCSSCAN Commandcccccccueueueueuruniririeieieirieeiereeieieeeeeseseseseseeeseseseseseseses s 12-2
Examples: Using the LCSSCAN Command..........cccueviiieiniiiicieeiccnc e 12-3
Getting Command-Line Help for the Language and Character Set File Scanner 12-4
Supported Languages and Character Sets............cccccciiuiiiiiiiciieieeccceeeeeeeeeeeeeeeeees 12-4
LCSSCAN EXTOr MESSAGES......ooueveiiiiiecieiiiiciete ettt s s 12-4
The Database Character Set SCANNEeTrcccooviviviiiiiiiiiiiiiiii s 12-5
Conversion Tests on Character Data..........ccocovvuiiiiiiiiiiniiiiic e, 12-5
Scan Modes in the Database Character Set Scanner ..o 12-6
Full Database SCAMcccoueueuiiririeiciiiieiccce ettt 12-6
USEIE SCAN ..ottt 12-6
TADLE SCATN.....ocviiiiiiiicicce s 12-6
COIUIMI SCAN ...ttt sttt s 12-6
Installing and Starting the Database Character Set Scanner ..., 12-6
Access Privileges for the Database Character Set Scanner.............cccocoviiiiiiiccicic, 12-7

xi

Installing the Database Character Set Scanner System Tablesc.ccccoooiiiiiiiiiinnan, 12-7

Starting the Database Character Set Scanner ..., 12-7
Creating the Database Character Set Scanner Parameter File..........c.cccccccccvvvinvnnnnnnnene. 12-8
Getting Command-Line Help for the Database Character Set Scanner-...............cccoeueenncei. 12-8
Database Character Set Scanner Parameters...............ccccocovviiniiiiiinin 12-8
Database Character Set Scanner Sessions: Examples...........cccoccccovenrinininninnenninnncneceeen 12-17
Full Database Scan EXamples...........ccccoviiiiiiiiiiiiiiiiii e 12-18
Database Character Set Scanner MeSSages...........cccovvuiuviiiiiniiiiiiiiniiiissesenes 12-18

User Scan EXAMPLES........c.c.oiiiiiiiiiccciccceceeece e 12-19
Database Character Set Scanner Messages...........cococcueueiiricieiiiicieiciine s 12-19

Single Table Scan EXamples...........cooiiiiiiiiiici e 12-19
Database Character Set SCanner MeSSaAgES........c.c.cueueurururerirueerurerireeririseeesesessesesseseseseeaes 12-20
Database Character Set Scanner Messages...........cccoceueueiiricieiiiicieiciiee s 12-21
Column Scan EXampPles..........c.coiriiiiiiiiiicie i 12-21
Database Character Set SCanner MeSSAZES........c.cueueueurururerurieerirerereriririssseseseeeeesseseseseeas 12-21
Database Character Set Scanner Reports..........cccoccouvveeiiiiniiineiniincincencenenceneeesreeseeenenees 12-22
Database Scan Summary RepOort........cooeueiiiiiiiiiiiice 12-22
Database SIZec.cccueucuiuiuririiiiicicieeee e 12-23
Database Scan Parameterscocoveeiiiininiiiiic s 12-23

SCAN SUMIMATY ...oviiii et aeas 12-23

Data Dictionary Conversion SUMMATY ... 12-24
Application Data Conversion SUMMATYcccocvuviiiiiiniiiiiceceeanes 12-29
Application Data Conversion Summary Per Column Size Boundaryc........... 12-29
Distribution of Convertible Data Per Tablecccooiiiiiiiiiiiiicccccccceeenenes 12-29
Distribution of Convertible Data Per Column...........ccoviiiiiiiiiiiiiiiccceines 12-30
Indexes To Be Rebulilt........cccooviviiiiiiiiiiiiniiiiiiiic e 12-30
Truncation Due To Character Semantics.........ccccoeeueuruririririerrniirrreeerre s 12-30
Character Set Detection Result...........ccoeiiiiiiiiiiiiiniiiiic 12-30
Language Detection Result...........ccoouiiiiiiiiiiii s 12-31
Database Scan Individual Exception RePOrt.........ccocviiiiiiiiiiiiiiiccccccccncecceenenes 12-31
Database Scan Parameters ..o 12-31

Data Dictionary Individual EXCEPiONSccccvuviiiiiiiiiiiiiiiiiiiicniicccccces 12-32
Application Data Individual EXCEPHONScocvvviiiiiiiiiiiccciccccccccccccenes 12-32

How to Handle Convertible or Lossy Data in the Data Dictionarycccoooviiiin. 12-33
Storage and Performance Considerations in the Database Character Set Scanner................ 12-35
Storage Considerations for the Database Character Set Scanner-.............cococoerivciiiccnne. 12-35
CSMBSBTABLES. ... 12-35
CSMSBCOLUMNS. ..ottt 12-35
CSMSBERRORS ...ttt 12-36
Performance Considerations for the Database Character Set Scanner............cccccoovvveininnne 12-36
Using Multiple Scan Processes..........ccovvviviviniiiiiiinininiinininiiciisicsccse s 12-36

Setting the Array Fetch Buffer Size ... 12-36
Optimizing the QUERY Clausecccoeuriiiiiiiiieiiiieiei s 12-36
Suppressing Exception and Convertible LOgccccoovviiiiiiiiiiiice 12-36
Recommendations and Restrictions for the Database Character Set Scanner...................... 12-37
Scanning Database Containing Data Not in the Database Character Set....................... 12-37
Scanning Database Containing Data from Two or More Character Sets....................... 12-37

Xii

13

Database Character Set Scanner CSALTER Script........cccccoooiiniiiiininiiiiiiiciccccee 12-37

Checking Phase of the CSALTER SCIipt......cccccooviiniiiiiiiiiiiiiiiiniincns 12-38
Updating Phase of the CSALTER SCIIPt......ccoviiririniiiiiiicciiccccceceieceeeeeeesenenenens 12-39
Database Character Set Scanner VIEWS...........cccccooiviiiiiiiiiiicc 12-39
CSMVSCOLUMNES ...t 12-40
CSMVSCONSTRAINTS ..ottt 12-40
CSMVSERRORS ..ot 12-41
CSMVSINDEXES........coooiiiiiiiiiiiniiei bbb 12-41
CSMVSTABLES ...ttt 12-41
Database Character Set Scanner Error Messages ... 12-42
Customizing Locale Data
Overview of the Oracle Locale Builder Utility ..o 13-1
Configuring Unicode Fonts for the Oracle Locale Buildercccccoovviinnnnninnnnn 13-2
Font Configuration on WindOWS........c.ccccciiiiiiiiiiiccececeeeeeeeeeeeneeeeeee s 13-2
Font Configuration on Other Platforms ..o 13-2
The Oracle Locale Builder User Interface............ccccooiviiiiiiininiiiiicces 13-3
Oracle Locale Builder Pages and Dialog BOXESccccceueueuruviriiirirriniiicccrcrececeeeeeaes 13-3
Existing Definitions Dialog BoXccooeueiiiiiiiiiii 13-4
Session Log Dialog BOXccciriiiiiiiiciic s 13-4
Preview NLT Tab Pagecccccceiiiiiiiiiiicccecice e 13-4
Open File Dialog BOX........ccocoiiiiiiiiiicic s 13-5
Creating a New Language Definition with Oracle Locale Buildercccccccoviiiiinnn, 13-6
Creating a New Territory Definition with the Oracle Locale Builderccccccoocvnnnne 13-9
Customizing Time Zone Datacoocueiiiiiiiiic 13-15
Customizing Calendars with the NLS Calendar Utility........ccoooooiiiiiiiiiiicc, 13-16
Displaying a Code Chart with the Oracle Locale Builder...............ccccooiiinnn 13-16
Creating a New Character Set Definition with the Oracle Locale Builder............................... 13-20
Character Sets with User-Defined Characterscooceoioiiiiiiiiniiccc, 13-20
Oracle Database Character Set Conversion Architecture...........ccccoovvviiininiiniiicennne. 13-21
Unicode 5.0 Private Use ATa........ccccceviviiiiiiiiiiiiiiiiiiiiiiccs e 13-21
User-Defined Character Cross-References Between Character Sets..........c.cccccovvvivininincnne. 13-22
Guidelines for Creating a New Character Set from an Existing Character Set.................... 13-22
Example: Creating a New Character Set Definition with the Oracle Locale Builder.......... 13-23
Creating a New Linguistic Sort with the Oracle Locale Builder...............ccccccoeiiinnniinnnnes 13-26
Changing the Sort Order for All Characters with the Same Diacritic.......c.cccocovvvirrcncncnce. 13-29
Changing the Sort Order for One Character with a Diacritic.......ccocoeeiiiiiiiiiiicci 13-31
Generating and Installing NLB Filesccccoiiiiiiiicccccccecceennas 13-33
Deploying Custom NLB Files on Other Platforms..............cccccccoovniiiinniinniis 13-34
Upgrading Custom NLB Files from Previous Releases of Oracle Database 13-35
Transporting NLB Data from One Platform to Another................cccooiiiii. 13-35
Adding Custom Locale Definitions to Java Components with the GINSTALL Utility 13-35
Locale Data
LaNGUAZESoviiniiiiiiii e A-1
Translated MeSSAZESccccovviiiiiiiiiiiiiiiiic s A-3

xiii

B RS s R 00) s (= SRR A-4

CRAracter Sets..........cooiiiiiii e A-5
Recommended Database Character Setsc.cccoccieiiiiiiiiiiicceeeeeeeeeeeeeeeeeeeeeees A-6
Other Character Sets ... A-8
Character Sets that Support the Euro Symbol ..o, A-12
Client-Only Character SEtS ...t se e seeeeees A-14
Universal Character Sets ... s A-15
Character Set Conversion SUPPOTtcccueuiiiriiiiiiccie e A-16
SUDbSEts and SUPETSELS........ccceuiuiiimiiciiiiicicicieece e A-16

Language and Character Set Detection SUppOrt ... A-18

LinGUistic SOIESooiiiiii s A-19

Calendar SYSEEIMSc.coiiiiiiiiiiii s A-22

Time Zone Region NAMEeSccccoevviiiiiiiiiiiiiiie s A-23

Obsolete Locale Data ... A-31
Obsolete LINGUISHIC SOTLS.....c.cueuiuiuiiiieieiiiciciiciciceieteeeeeeteeeeeeeee e A-31
ODbsolete TeITItOrIS.couiviiiiiiiiiiiiciiteieiecc s A-31
Obsolete LangUagesccocueuiiiiueieiiiiciei it A-32
Obsolete Character Sets and Replacement Character Sets...........cccccoceeicieieciccicccenenen A-32
AL24UTFFSS Character Set Desupported ... A-33
Updates to the Oracle Database Language and Territory Definition Files.............ccc............. A-34

B Unicode Character Code Assignments

Unicode Code RANGES..........cccooviiiiiiiiiiiiiiiiiiic s B-1

UTF-16 ENCOAINGooviiiiiiiiiiii s B-2

UTF-8 ENCOAING ...t s B-2

Index

Xiv

Preface

This book describes Oracle globalization support for Oracle Database. It explains how
to set up a globalization support environment, choose and migrate a character set,
customize locale data, do linguistic sorting, program in a global environment, and
program with Unicode.

This preface contains these topics:
» Intended Audience

= Documentation Accessibility
= Related Documentation

s Conventions

Intended Audience

Oracle Database Globalization Support Guide is intended for database administrators,
system administrators, and database application developers who perform the
following tasks:

= Set up a globalization support environment
= Choose, analyze, or migrate character sets

= Sort data linguistically

s Customize locale data

= Write programs in a global environment

s Use Unicode

To use this document, you need to be familiar with relational database concepts, basic
Oracle server concepts, and the operating system environment under which you are
running Oracle.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be

XV

accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http: //www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documentation

Many of the examples in this book use the sample schemas of the seed database, which
is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas
for information on how these schemas were created and how you can use them
yourself.

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

Conventions

XVi

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

= Conventions in Text
= Conventions in Code Examples

s Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention

Meaning

Example

Bold

Italics

UPPERCASE
monospace

(fixed-width)
font

lowercase
monospace
(fixed-width)
font

lowercase
italic
monospace

(fixed-width)
font

Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

Italic typeface indicates book titles or
emphasis.

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

When you specify this clause, you create an
index-organized table.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_ STATS.GENERATE_STATS
procedure.

Enter sglplus to start SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the
/diskl/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

You can specify the parallel_clause.

Run old_release.SQL where o1d _release
refers to the release you installed prior to
upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text

as shown in this example:

SELECT username FROM dba_users WHERE username =

'MIGRATE';

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

[]

Brackets enclose one or more optional
items. Do not enter the brackets.

Braces enclose two or more items, one of
which is required. Do not enter the braces.

A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

DECIMAL (digits [, precision 1)

{ENABLE | DISABLE}

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

xvii

Convention

Meaning

Example

Other notation

Horizontal ellipsis points indicate either:

» That we have omitted parts of the
code that are not directly related to the
example

= That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

CREATE TABLE ... AS subquery;

SELECT coll, coln FROM

employees;

col2, ... ,

SQL> SELECT NAME FROM VS$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1l/dbs/tbs_02.dbf

/fsl/dbs/tbs_09.dbf
9 rows selected.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER (4) := 3;

Ttalics Italicized text indicates placeholders or CONNECT SYSTEM/system password
variables for which you must supply DB_NAME = database_name
particular values.
UPPERCASE Uppercase typeface indicates elements SELECT last_name, employee_id FROM
supplied by the system. We show these employees;
terms in uppercase in order to distinguish gg,EcT * FROM USER_TABLES;
them frqm terms you define. Upless terms ppop TABLE hr.employees;
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.
lowercase Lowercase typeface indicates SELECT last_name, employee_id FROM
programmatic elements that you supply. employees;
For example, lowercase indicates names of ¢q1plus hr/hr
tables, columns, or files. CREATE USER mjones IDENTIFIED BY ty3MU9;
Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.
Convention Meaning Example
Choose Start > How to start a program. To start the Database Configuration Assistant,

xviii

choose Start > Programs > Oracle - HOME _
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

Convention

Meaning

Example

File and directory
names

C:\>

Special characters

HOME_NAME

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (1), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the file name
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (*). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (') do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

c:\winnt"\"system32 is the same as
C: \WINNT\SYSTEM32

C:\oracle\oradata>

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job='SALESMAN' and
sal<1600\"

C:\>imp SYSTEM/password FROMUSER=scott
TABLES= (emp, dept)

C:\> net start OracleHOME_NAMETNSListener

Xix

Convention

Meaning Example

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3, Go to the ORACLE_BASE\ ORACLE_
when you installed Oracle components, all HOME\ rdbms\admin directory.
subdirectories were located under a top

level ORACLE_HOME directory that by

default used one of the following names:

s C:\orant for Windows NT
s C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOME directory. There is a top
level directory called ORACLE_BASE that
by defaultis C: \oracle. If you install the
latest Oracle release on a computer with no
other Oracle software installed, then the
default setting for the first Oracle home
directory is C: \oracle\orann, where nn
is the latest release number. The Oracle
home directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide for
Microsoft Windows for additional
information about OFA compliances and
for information about installing Oracle
products in non-OFA compliant
directories.

XX

What's New in Globalization Support?

This section describes new features of globalization support, provides pointers to
related information in this book, and contains these topics:

s Oracle Database 11g Release 2 (11.2) New Features in Globalization
s Oracle Database 11g Release 1 (11.1) New Features in Globalization

Oracle Database 11g Release 2 (11.2) New Features in Globalization
= Support for simplified patching of TIMESTAMP WITH TIMEZONE data type values

Prior to Oracle Database 11g Release 2, patching TIMESTAMP WITH TIMEZONE
data values manually on the database after the time zone file had been updated
was a tedious process. Now, this patching is simplified and transparent.

In addition, OCI, JDBC, Pro*C, and SQL*Plus clients can now continue to
communicate with the server without having to update client-side time zone files,
but there are some considerations when working in such a mixed mode.

See Also:

s Chapter 4, "Datetime Data Types and Time Zone Support"

» Oracle Call Interface Programmer’s Guide for the ramifications of
operating in a mixed mode where the client and the server have
different versions of time zone files

Oracle Database 11g Release 1 (11.1) New Features in Globalization

= Support for Unicode 5.0, a major version of the Unicode Standard that supercedes
all previous versions of the standard.

- 1,369 new character assignments have been made to the Unicode Standard.
These additions include new characters for Cyrillic, Greek, Hebrew, Kannada,
Latin, math, phonetic extensions, symbols.

- New scripts have been added in Unicode 5.0: N'Ko, Balinese, Phags-pa,
Phoenician, Cuneiform.

- Improvements have been made in how to use characters, for example, their
properties or display algorithms.

— In addition to classifications for all of the new characters, a number of
Southeast Asian characters have been re-classified.

XXi

See Also:
s Chapter 1, "Overview of Globalization Support"
s Chapter 6, "Supporting Multilingual Databases with Unicode"

s Recommended Database Character Sets and Statement of Direction

A list of character sets has been compiled that Oracle strongly recommends for
usage as the database character set. For new system deployment, the database
character set is limited to this list of recommended character sets.

See Also:
» Chapter 2, "Choosing a Character Set"
= Appendix A, "Locale Data"

» Improved performance for character set conversion.

= New report section for Database Character Set Scanner that provides information
about compact binary XML (CSX) data in the Data Dictionary.

See Also: Chapter 12, "Character Set Scanner Utilities"

= GINSTALL utility for adding customized locale files to Java components.

See Also: Chapter 13, "Customizing Locale Data"

» Three new languages added: Albanian, Belarusian, and Irish, and two new
territories added: Albania and Belarus.

See Also: Appendix A, "Locale Data"

» Linguistic index support for collation-sensitive SQL LIKE condition.

See Also: Chapter 5, "Linguistic Sorting and String Searching”"

XXii

1

Overview of Globalization Support

This chapter provides an overview of globalization support for Oracle Database. This
chapter discusses the following topics:

= Globalization Support Architecture

= Globalization Support Features

Globalization Support Architecture

The globalization support in Oracle Database enables you to store, process, and
retrieve data in native languages. It ensures that database utilities, error messages, sort
order, and date, time, monetary, numeric, and calendar conventions automatically
adapt to any native language and locale.

In the past, Oracle referred to globalization support capabilities as National Language
Support (NLS) features. NLS is actually a subset of globalization support. NLS is the
ability to choose a national language and store data in a specific character set.
Globalization support enables you to develop multilingual applications and software
products that can be accessed and run from anywhere in the world simultaneously.
An application can render content of the user interface and process data in the native
users' languages and locale preferences.

Locale Data on Demand

Oracle Database globalization support is implemented with the Oracle NLS Runtime
Library (NLSRTL). The NLS RTL provides a comprehensive suite of
language-independent functions that perform proper text and character processing
and language-convention manipulations. Behavior of these functions for a specific
language and territory is governed by a set of locale-specific data that is identified and
loaded at run time.

The locale-specific data is structured as independent sets of data for each locale that
Oracle Database supports. The data for a particular locale can be loaded
independently of other locale data.

The advantages of this design are as follows:

= You can manage memory consumption by choosing the set of locales that you
need.

= You can add and customize locale data for a specific locale without affecting other
locales.

Overview of Globalization Support 1-1

Globalization Support Architecture

Figure 1-1 shows how locale-specific data is loaded at run time. In this example,
French data and Japanese data are loaded into the multilingual database, but German
data is not.

Figure 1-1 Loading Locale-Specific Data to the Database

Multilingual
Database
A
P
O
(o)
9{9 %

German French Japanese
Data Data Data

The locale-specific data is stored in the SORACLE_HOME/nls/data directory. The
ORA_NLS10 environment variable should be defined only when you need to change
the default directory location for the locale-specific datafiles, for example, when the
system has multiple Oracle Database homes that share a single copy of the
locale-specific datafiles.

A boot file is used to determine the availability of the NLS objects that can be loaded.
Oracle Database supports both system and user boot files. The user boot file gives you
the flexibility to tailor what NLS locale objects are available for the database. Also,
new locale data can be added and some locale data components can be customized.

See Also: Chapter 13, "Customizing Locale Data"

Architecture to Support Multilingual Applications

Oracle Database enables multitier applications and client/server applications to
support languages for which the database is configured.

The locale-dependent operations are controlled by several parameters and
environment variables on both the client and the database server. On the database
server, each session that is started on behalf of a client may run in the same or a
different locale as other sessions, and can have the same or different language
requirements specified.

Oracle Database has a set of session-independent NLS parameters that are specified
when you create a database. Two of the parameters specify the database character set
and the national character set, which is an alternative Unicode character set that can be
specified for NCHAR, NVARCHAR2, and NCLOB data. The parameters specify the
character set that is used to store text data in the database. Other parameters, such as
language and territory, are used to evaluate and check constraints.

If the client session and the database server specify different character sets, then the
database converts character set strings automatically.

1-2 Oracle Database Globalization Support Guide

Globalization Support Architecture

From a globalization support perspective, all applications are considered to be clients,
even if they run on the same physical machine as the Oracle Database instance. For
example, when SQL*Plus is started by the UNIX user who owns the Oracle Database
software from the Oracle home in which the RDBMS software is installed, and
SQL*Plus connects to the database through an adapter by specifying the ORACLE_SID
parameter, SQL*Plus is considered a client. Its behavior is ruled by client-side NLS
parameters.

Another example of an application being considered a client occurs when the middle
tier is an application server. The different sessions spawned by the application server
are considered to be separate client sessions.

When a client application is started, it initializes the client NLS environment from
environment settings. All NLS operations performed locally are executed using these
settings. Examples of local NLS operations are:

s Display formatting in Oracle Developer applications
= User OCI code that executes NLS OCI functions with OCI environment handles

When the application connects to a database, a session is created on the server. The
new session initializes its NLS environment from NLS instance parameters specified in
the initialization parameter file. These settings can be subsequently changed by an
ALTER SESSION statement. The statement changes only the session NLS environment.
It does not change the local client NLS environment. The session NLS settings are used
to process SQL and PL/SQL statements that are executed on the server. For example,
use an ALTER SESSION statement to set the NLS_LANGUAGE initialization parameter
to Italian:

ALTER SESSION SET NLS_LANGUAGE=Italian;

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following:

LAST NAME HIRE_DATE SALARY
Sciarra 30-SET-05 962.5
Urman 07-MAR-06 975
Popp 07-DIC-07 862.5

Note that the month name abbreviations are in Italian.

Immediately after the connection has been established, if the NL.S_LANG environment
setting is defined on the client side, then an implicit ALTER SESSION statement
synchronizes the client and session NLS environments.

See Also:
» Chapter 10, "OCI Programming in a Global Environment"
= Chapter 3, "Setting Up a Globalization Support Environment"

Using Unicode in a Multilingual Database

Unicode, the universal encoded character set, enables you to store information in any
language by using a single character set. Unicode provides a unique code value for
every character, regardless of the platform, program, or language.

Overview of Globalization Support 1-3

Globalization Support Features

Unicode has the following advantages:
= Simplifies character set conversion and linguistic sort functions.
s Improves performance compared with native multibyte character sets.
= Supports the Unicode data type based on the Unicode standard.

See Also:

s Chapter 6, "Supporting Multilingual Databases with Unicode"
s Chapter 7, "Programming with Unicode"

= "Enabling Multilingual Support with Unicode Data Types" on
page 6-7

Globalization Support Features

This section provides an overview of the standard globalization features in Oracle
Database:

= Language Support

s Territory Support

s Date and Time Formats

= Monetary and Numeric Formats

= Calendar Systems

= Linguistic Sorting

n Character Set Support

n Character Semantics

» Customization of Locale and Calendar Data

s Unicode Support

Language Support

Oracle Database enables you to store, process, and retrieve data in native languages.
The languages that can be stored in a database are all languages written in scripts that
are encoded by Oracle-supported character sets. Through the use of Unicode
databases and data types, Oracle Database supports most contemporary languages.

Additional support is available for a subset of the languages. The database can, for
example, display dates using translated month names, and can sort text data according
to cultural conventions.

When this document uses the term language support, it refers to the additional
language-dependent functionality, and not to the ability to store text of a specific
language. For example, language support includes displaying dates or sorting text
according to specific locales and cultural conventions. Additionally, for some
supported languages, Oracle Database provides translated error messages and a
translated user interface for the database utilities.

1-4 Oracle Database Globalization Support Guide

Globalization Support Features

See Also:
s Chapter 3, "Setting Up a Globalization Support Environment"

s "Languages" on page A-1 for a complete list of Oracle Database
language names and abbreviations

s "Translated Messages" on page A-3 for a list of languages into
which Oracle Database messages are translated

Territory Support

Oracle Database supports cultural conventions that are specific to geographical
locations. The default local time format, date format, and numeric and monetary
conventions depend on the local territory setting. Setting different NLS parameters
enables the database session to use different cultural settings. For example, you can set
the euro (EUR) as the primary currency and the Japanese yen (JPY) as the secondary
currency for a given database session, even when the territory is defined as AMERICA.

See Also:
= Chapter 3, "Setting Up a Globalization Support Environment"

s "Territories" on page A-4 for a list of territories that are
supported by Oracle Database

Date and Time Formats

Different conventions for displaying the hour, day, month, and year can be handled in
local formats. For example, in the United Kingdom, the date is displayed using the
DD-MON-YYYY format, while Japan commonly uses the YYYY-MM-DD format.

Time zones and daylight saving support are also available.

See Also:

» Chapter 3, "Setting Up a Globalization Support Environment"
» Chapter 4, "Datetime Data Types and Time Zone Support"

» Oracle Database SQL Language Reference

Monetary and Numeric Formats

Currency, credit, and debit symbols can be represented in local formats. Radix
symbols and thousands separators can be defined by locales. For example, in the US,
the decimal point is a dot (.), while it is a comma (,) in France. Therefore, the amount
$1,234 has different meanings in different countries.

See Also: Chapter 3, "Setting Up a Globalization Support
Environment"

Calendar Systems

Many different calendar systems are in use around the world. Oracle Database
supports seven different calendar systems:

= Gregorian
= Japanese Imperial

= ROC Official (Republic of China)

Overview of Globalization Support 1-5

Globalization Support Features

s Thai Buddha

s Persian

= English Hijrah
= Arabic Hijrah

See Also:
= Chapter 3, "Setting Up a Globalization Support Environment"

= "Calendar Systems" on page A-22 for more information about
supported calendars

Linguistic Sorting

Oracle Database provides linguistic definitions for culturally accurate sorting and case
conversion. The basic definition treats strings as sequences of independent characters.

The extended definition recognizes pairs of characters that should be treated as special
cases.

Strings that are converted to upper case or lower case using the basic definition always
retain their lengths. Strings converted using the extended definition may become
longer or shorter.

See Also: Chapter 5, "Linguistic Sorting and String Searching"

Character Set Support

Oracle Database supports a large number of single-byte, multibyte, and fixed-width
encoding schemes that are based on national, international, and vendor-specific
standards.

See Also:
s Chapter 2, "Choosing a Character Set"

s "Character Sets" on page A-5 for a list of supported character
sets

Character Semantics

Oracle Database provides character semantics. It is useful for defining the storage
requirements for multibyte strings of varying widths in terms of characters instead of
bytes.

See Also: "Length Semantics" on page 2-8

Customization of Locale and Calendar Data

You can customize locale data such as language, character set, territory, or linguistic
sort using the Oracle Locale Builder.

You can customize calendars with the NLS Calendar Utility.

See Also:
» Chapter 13, "Customizing Locale Data"

s "Customizing Calendars with the NLS Calendar Utility" on
page 13-16

1-6 Oracle Database Globalization Support Guide

Globalization Support Features

Unicode Support

Unicode is an industry standard that enables text and symbols from all languages to
be consistently represented and manipulated by computers. The latest version of the
Unicode standard, as of this release, is 5.0.

Oracle Database has complied with the Unicode standard since Oracle 7.
Subsequently, Oracle Database 10g release 2 supports Unicode 4.0. Oracle Database
11g release supports Unicode 5.0.

You can store Unicode characters in an Oracle database in two ways:

= You can create a Unicode database that enables you to store UTF-8 encoded
characters as SQL CHAR data types.

= You can support multilingual data in specific columns by using Unicode data
types. You can store Unicode characters into columns of the SQL NCHAR data
types regardless of how the database character set has been defined. The NCHAR
data type is an exclusively Unicode data type.

See Also: Chapter 6, "Supporting Multilingual Databases with
Unicode"

Overview of Globalization Support 1-7

Globalization Support Features

1-8 Oracle Database Globalization Support Guide

2

Choosing a Character Set

This chapter explains how to choose a character set. The following topics are included:

Character Set Encoding

Length Semantics

Choosing an Oracle Database Character Set
Changing the Character Set After Database Creation
Monolingual Database Scenario

Multilingual Database Scenarios

Character Set Encoding

When computer systems process characters, they use numeric codes instead of the
graphical representation of the character. For example, when the database stores the
letter A, it actually stores a numeric code that the computer system interprets as the
letter. These numeric codes are especially important in a global environment because
of the potential need to convert data between different character sets.

This section discusses the following topics:

What is an Encoded Character Set?

Which Characters Are Encoded?

What Characters Does a Character Set Support?
How are Characters Encoded?

Naming Convention for Oracle Database Character Sets

What is an Encoded Character Set?

You specify an encoded character set when you create a database. Choosing a
character set determines what languages can be represented in the database. It also
affects:

How you create the database schema

How you develop applications that process character data
How the database works with the operating system
Database performance

Storage required for storing character data

Choosing a Character Set 2-1

Character Set Encoding

A group of characters (for example, alphabetic characters, ideographs, symbols,
punctuation marks, and control characters) can be encoded as a character set. An
encoded character set assigns a unique numeric code to each character in the character
set. The numeric codes are called code points or encoded values. Table 2-1 shows
examples of characters that have been assigned a hexadecimal code value in the ASCII
character set.

Table 2-1 Encoded Characters in the ASCII Character Set

Character Description Hexadecimal Code Value
! Exclamation Mark 21
Number Sign 23
$ Dollar Sign 24
1 Number 1 31
2 Number 2 32
3 Number 3 33
A Uppercase A 41
B Uppercase B 42
C Uppercase C 43
a Lowercase a 61
b Lowercase b 62
c Lowercase c 63

The computer industry uses many encoded character sets. Character sets differ in the
following ways:

s The number of characters available to be used in the set

s The characters that are available to be used in the set (also known as the character
repertoire)

» The scripts used for writing and the languages that they represent
= The code points or values assigned to each character
= The encoding scheme used to represent a specific character

Oracle Database supports most national, international, and vendor-specific encoded
character set standards.

See Also: "Character Sets" on page A-5 for a complete list of
character sets that are supported by Oracle Database

Which Characters Are Encoded?

The characters that are encoded in a character set depend on the writing systems that
are represented. A writing system can be used to represent a language or a group of
languages. Writing systems can be classified into two categories:

= Phonetic Writing Systems

s Ideographic Writing Systems

This section also includes the following topics:

s Punctuation, Control Characters, Numbers, and Symbols

s Writing Direction

2-2 Oracle Database Globalization Support Guide

Character Set Encoding

Phonetic Writing Systems

Phonetic writing systems consist of symbols that represent different sounds associated
with a language. Greek, Latin, Cyrillic, and Devanagari are all examples of phonetic
writing systems based on alphabets. Note that alphabets can represent multiple
languages. For example, the Latin alphabet can represent many Western European
languages such as French, German, and English.

Characters associated with a phonetic writing system can typically be encoded in one
byte because the character repertoire is usually smaller than 256 characters.

Ideographic Writing Systems

Ideographic writing systems consist of ideographs or pictographs that represent the
meaning of a word, not the sounds of a language. Chinese and Japanese are examples
of ideographic writing systems that are based on tens of thousands of ideographs.
Languages that use ideographic writing systems may also use a syllabary. Syllabaries
provide a mechanism for communicating additional phonetic information. For
instance, Japanese has two syllabaries: Hiragana, normally used for grammatical
elements, and Katakana, normally used for foreign and onomatopoeic words.

Characters associated with an ideographic writing system typically are encoded in
more than one byte because the character repertoire has tens of thousands of
characters.

Punctuation, Control Characters, Numbers, and Symbols

In addition to encoding the script of a language, other special characters must be
encoded:

= Punctuation marks such as commas, periods, and apostrophes

= Numbers

= Special symbols such as currency symbols and math operators

= Control characters such as carriage returns and tabs

Writing Direction

Most Western languages are written left to right from the top to the bottom of the
page. East Asian languages are usually written top to bottom from the right to the left
of the page, although exceptions are frequently made for technical books translated
from Western languages. Arabic and Hebrew are written right to left from the top to
the bottom.

Numbers reverse direction in Arabic and Hebrew. Although the text is written right to
left, numbers within the sentence are written left to right. For example, "I wrote 32
books" would be written as "skoob 32 etorw I". Regardless of the writing direction,
Oracle Database stores the data in logical order. Logical order means the order that is
used by someone typing a language, not how it looks on the screen.

Writing direction does not affect the encoding of a character.

What Characters Does a Character Set Support?

Different character sets support different character repertoires. Because character sets
are typically based on a particular writing script, they can support multiple languages.
When character sets were first developed, they had a limited character repertoire.
Even now there can be problems using certain characters across platforms. The

Choosing a Character Set 2-3

Character Set Encoding

following CHAR and VARCHAR characters are represented in all Oracle Database
character sets and can be transported to any platform:

s Uppercase and lowercase English characters A through Z and a through z
= Arabic digits 0 through 9

» The following punctuation marks: % “ ' () *+-,. / \ ;;<>=!_&~{} I "?$#@"

[

= The following control characters: space, horizontal tab, vertical tab, form feed

If you are using characters outside this set, then take care that your data is supported
in the database character set that you have chosen.

Setting the NLS_LANG parameter properly is essential to proper data conversion. The
character set that is specified by the NL.S_LANG parameter should reflect the setting for
the client operating system. Setting NL.S_LANG correctly enables proper conversion
from the client operating system character encoding to the database character set.
When these settings are the same, Oracle Database assumes that the data being sent or
received is encoded in the same character set as the database character set, so character
set validation or conversion may not be performed. This can lead to corrupt data if
conversions are necessary.

During conversion from one character set to another, Oracle Database expects
client-side data to be encoded in the character set specified by the NLS_LANG
parameter. If you put other values into the string (for example, by using the CHR or
CONVERT SQL functions), then the values may be corrupted when they are sent to the
database because they are not converted properly. If you have configured the
environment correctly and if the database character set supports the entire repertoire
of character data that may be input into the database, then you do not need to change
the current database character set. However, if your enterprise becomes more
globalized and you have additional characters or new languages to support, then you
may need to choose a character set with a greater character repertoire. Oracle
recommends that you use Unicode databases and data types.

See Also:
s Chapter 6, "Supporting Multilingual Databases with Unicode"

» Oracle Database SQL Language Reference for more information
about the CHR and CONVERT SQL functions

s "Displaying a Code Chart with the Oracle Locale Builder" on
page 13-16

ASCIl Encoding

Table 2-2 shows how the ASCII character set is encoded. Row and column headings
denote hexadecimal digits. To find the encoded value of a character, read the column
number followed by the row number. For example, the code value of the character A is
0x41.

Table 2-2 7-Bit ASCII Character Set

- 0 1 2 3 4 5 6 7
0 NUL DLE SP 0 @ P ' p
1 SOH DC1 ! 1 A Q q
2 STX DC2 " 2 B R b r
3 ETX DC3 # 3 C S c s

2-4 Oracle Database Globalization Support Guide

Character Set Encoding

Table 2-2 (Cont.) 7-Bit ASCII Character Set

- 0 1 2 3 4 5 7
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
6 ACK SYN & 6 F \Y f v
7 BEL ETB 7 G w g w
8 BS CAN (8 H X h X
9 TAB EM) 9 I Y i y
A LF SUB *] z j z
B VT ESC + ; K [k {
C FF FS , < L \ 1 |
D CR GS - = M m }
E SO RS > N A n ~
F SI Us / ? o o DEL

As languages evolve to meet the needs of people around the world, new character sets
are created to support the languages. Typically, these new character sets support a
group of related languages based on the same script. For example, the ISO 8859
character set series was created to support different European languages. Table 2-3
shows the languages that are supported by the ISO 8859 character sets.

Choosing a Character Set 2-5

Character Set Encoding

Table 2-3 ISO 8859 Character Sets

Standard Languages Supported

1SO 8859-1 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Faeroese,
Finnish, French, German, Greenlandic, Icelandic, Irish Gaelic, Italian, Latin, Luxemburgish,
Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish)

ISO 8859-2 Eastern European (Albanian, Croatian, Czech, English, German, Hungarian, Latin, Polish,
Romanian, Slovak, Slovenian, Serbian)

1SO 8859-3 Southeastern European (Afrikaans, Catalan, Dutch, English, Esperanto, German, Italian,
Maltese, Spanish, Turkish)

1SO 8859-4 Northern European (Danish, English, Estonian, Finnish, German, Greenlandic, Latin, Latvian,
Lithuanian, Norwegian, Simi, Slovenian, Swedish)

ISO 8859-5 Eastern European (Cyrillic-based: Bulgarian, Byelorussian, Macedonian, Russian, Serbian,
Ukrainian)

ISO 8859-6 Arabic

ISO 8859-7 Greek

ISO 8859-8 Hebrew

ISO 8859-9 Western European (Albanian, Basque, Breton, Catalan, Cornish, Danish, Dutch, English,
Finnish, French, Frisian, Galician, German, Greenlandic, Irish Gaelic, Italian, Latin,
Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish,
Turkish)

ISO 8859-10 Northern European (Danish, English, Estonian, Faeroese, Finnish, German, Greenlandic,
Icelandic, Irish Gaelic, Latin, Lithuanian, Norwegian, Sami, Slovenian, Swedish)

ISO 8859-13 Baltic Rim (English, Estonian, Finnish, Latin, Latvian, Norwegian)

ISO 8859-14 Celtic (Albanian, Basque, Breton, Catalan, Cornish, Danish, English, Galician, German,
Greenlandic, Irish Gaelic, Italian, Latin, Luxemburgish, Manx Gaelic, Norwegian, Portuguese,
Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish, Welsh)

ISO 8859-15 Western European (Albanian, Basque, Breton, Catalan, Danish, Dutch, English, Estonian,

Faroese, Finnish, French, Frisian, Galician, German, Greenlandic, Icelandic, Irish Gaelic, Italian,
Latin, Luxemburgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish,
Swedish)

Historically, character sets have provided restricted multilingual support, which has
been limited to groups of languages based on similar scripts. More recently, universal
character sets have emerged to enable greatly improved solutions for multilingual
support. Unicode is one such universal character set that encompasses most major
scripts of the modern world. As of version 5.0, Unicode supports more than 99,000
characters.

See Also: Chapter 6, "Supporting Multilingual Databases with
Unicode"

How are Characters Encoded?

Different types of encoding schemes have been created by the computer industry. The
character set you choose affects what kind of encoding scheme is used. This is
important because different encoding schemes have different performance
characteristics. These characteristics can influence your database schema and
application development. The character set you choose uses one of the following types
of encoding schemes:

= Single-Byte Encoding Schemes
= Multibyte Encoding Schemes

2-6 Oracle Database Globalization Support Guide

Character Set Encoding

Single-Byte Encoding Schemes

Single-byte encoding schemes are efficient. They take up the least amount of space to
represent characters and are easy to process and program with because one character
can be represented in one byte. Single-byte encoding schemes are classified as one of
the following types:

= 7-bit encoding schemes

Single-byte 7-bit encoding schemes can define up to 128 characters and normally
support just one language. One of the most common single-byte character sets,
used since the early days of computing, is ASCII (American Standard Code for
Information Interchange).

= 8-bit encoding schemes

Single-byte 8-bit encoding schemes can define up to 256 characters and often
support a group of related languages. One example is ISO 8859-1, which supports
many Western European languages. Figure 2-1 shows the ISO 8859-1 8-bit
encoding scheme.

Figure 2-1 SO 8859-1 8-Bit Encoding Scheme

o 1 z 3 4 5 6 7 A E C D E F
O NUL DLE SP 0 @ P * p HNMNBSP° A B & B
1 S0H DC1 | 1 A Q0 a q | = & B4 A
2 sTX DC2 " 2 B R b r ¢ z A 0O &4 b
3 ETX DC3 # 3 C S ¢ s f = A 0 4 &
4 EOT DC4 § 4 0 T d t = S S B
5 ENQ MNAK % 5 E U e u ¥ wooA D a5
6 ACK SYN & 6 F v Ff v T & 0 =& &
7 BEL ETB ° 7 G W g w 8§ C x ¢ =
8 BS CAN 8 H ¥ h x ~ . E @ & @
9 HT EM)] g I ¥ 1 vy @ 1 E U & U
4 NL SUB ¢ .1z oz =& o E 0 & 0
B ¥T ESC + ;K [kf o« » B0 & 0
C NP FS) L S S AN N B
D CR GS - = m 1 m 3 - v I¥ 9§
E S0 RS > N & n o~ ® ®wm I P 1 b
FsI Us / ? 0 _ o DEL S SR T B

Multibyte Encoding Schemes

Multibyte encoding schemes are needed to support ideographic scripts used in Asian
languages like Chinese or Japanese because these languages use thousands of
characters. These encoding schemes use either a fixed number or a variable number of
bytes to represent each character.

s Fixed-width multibyte encoding schemes

In a fixed-width multibyte encoding scheme, each character is represented by a
fixed number of bytes. The number of bytes is at least two in a multibyte encoding
scheme.

= Variable-width multibyte encoding schemes

A variable-width encoding scheme uses one or more bytes to represent a single
character. Some multibyte encoding schemes use certain bits to indicate the
number of bytes that represents a character. For example, if two bytes is the
maximum number of bytes used to represent a character, then the most significant

Choosing a Character Set 2-7

Length Semantics

bit can be used to indicate whether that byte is a single-byte character or the first
byte of a double-byte character.

= Shift-sensitive variable-width multibyte encoding schemes

Some variable-width encoding schemes use control codes to differentiate between
single-byte and multibyte characters with the same code values. A shift-out code
indicates that the following character is multibyte. A shift-in code indicates that
the following character is single-byte. Shift-sensitive encoding schemes are used
primarily on IBM platforms. Note that ISO-2022 character sets cannot be used as
database character sets, but they can be used for applications such as a mail server.

Naming Convention for Oracle Database Character Sets

Oracle Database uses the following naming convention for its character set names:
<region><number of bits used to represent a character><standard character set name>[S|C]
The parts of the names that appear between angle brackets are concatenated. The

optional S or C is used to differentiate character sets that can be used only on the
server (S) or only on the client (C).

Note: Keep in mind that:

s You should use the server character set (S) on the Macintosh
platform. The Macintosh client character sets are obsolete. On
EBCDIC platforms, use the server character set (S) on the
server and the client character set (C) on the client.

s UTEF8 and UTFE are exceptions to the naming convention.

Table 2-4 shows examples of Oracle Database character set names.

Table 2-4 Examples of Oracle Database Character Set Names

Number of

Oracle Database Bits Used to Standard
Character Set Represent a Character Set
Name Description Region Character Name
US7ASCII U.S. 7-bit ASCIL Us 7 ASCII
WESISO8859P1 Western European WE (Western 8 1SO8859 Part 1

8-bit ISO 8859 Part 1 Europe)
JA16SJIS Japanese 16-bit JA 16 SJIS

Shifted Japanese

Industrial Standard

Length Semantics

In single-byte character sets, the number of bytes and the number of characters in a
string are the same. In multibyte character sets, a character or code point consists of
one or more bytes. Calculating the number of characters based on byte lengths can be
difficult in a variable-width character set. Calculating column lengths in bytes is called
byte semantics, while measuring column lengths in characters is called character
semantics.

Character semantics is useful for defining the storage requirements for multibyte
strings of varying widths. For example, in a Unicode database (AL32UTF8), suppose

2-8 Oracle Database Globalization Support Guide

Length Semantics

that you need to define a VARCHAR2 column that can store up to five Chinese
characters together with five English characters. Using byte semantics, this column
requires 15 bytes for the Chinese characters, which are three bytes long, and 5 bytes for
the English characters, which are one byte long, for a total of 20 bytes. Using character
semantics, the column requires 10 characters.

The following expressions use byte semantics:
s VARCHAR2 (20 BYTE)
m SUBSTRB(string, 1, 20)

Note the BYTE qualifier in the VARCHAR2 expression and the B suffix in the SQL
function name.

The following expressions use character semantics:

s VARCHAR2 (10 CHAR)

m SUBSTR(string, 1, 10)

Note the CHAR qualifier in the VARCHAR2 expression.

The NLS_LENGTH_SEMANTICS initialization parameter determines whether a new
column of character data type uses byte or character semantics. The default value of
the parameter is BYTE. The BYTE and CHAR qualifiers shown in the VARCHAR2
definitions should be avoided when possible because they lead to mixed-semantics
databases. Instead, set NLS_LENGTH_SEMANTICS in the initialization parameter file
and define column data types to use the default semantics based on the value of NLS_
LENGTH_SEMANTICS.

Byte semantics is the default for the database character set. Character length semantics
is the default and the only allowable kind of length semantics for NCHAR data types.
The user cannot specify the CHAR or BYTE qualifier for NCHAR definitions.

Consider the following example:

CREATE TABLE employees
employee_id NUMBER(4)

, last_name NVARCHAR2 (10)
, job_id NVARCHAR2 (9)

, manager_id NUMBER(4)

, hire_date DATE

, salary NUMBER(7,2)
department_id NUMBER (2)
)

When the NCHAR character set is AL16UTF16, last_name can hold up to 10 Unicode
code points. When the NCHAR character set is AL16UTF16, last_name can hold up to
20 bytes.

Figure 2-2 shows the number of bytes needed to store different kinds of characters in
the UTF-8 character set. The ASCII characters requires one byte, the Latin and Greek
characters require two bytes, the Asian character requires three bytes, and the
supplementary character requires four bytes of storage.

Choosing a Character Set 2-9

Choosing an Oracle Database Character Set

Figure 2-2 Bytes of Storage for Different Kinds of Characters

ASCII
Latin
ASCII
Asian
Supplementary character
ASCII
Latin
‘ Greek
I
Characters |C |a t|ﬁ|&|d|0|d)|
o AT \\\\\\:\1:\:::1 - -
I N
Byte Storage |63|C3| 91|74 |E4|BA|oc|Fo|oD|84 |oE|64|C3|B6|D0| A4
for UTF-8 | I I
[I I I I I I
1 2 1 3 4 1 2 2
byte bytes byte bytes bytes byte bytes bytes
See Also:

"SQL Functions for Different Length Semantics" on page 9-5 for
more information about the SUBSTR and SUBSTRB functions

"Length Semantics" on page 3-32 for more information about
the NLS_LENGTH_SEMANTICS initialization parameter

Chapter 6, "Supporting Multilingual Databases with Unicode"
for more information about Unicode and the NCHAR data type

Oracle Database SQL Language Reference for more information
about the SUBSTRB and SUBSTR functions and the BYTE and
CHAR qualifiers for character data types

Choosing an Oracle Database Character Set

Oracle Database uses the database character set for:

= Data stored in SQL CHAR data types (CHAR, VARCHAR2, CLOB, and LONG)

s Identifiers such as table names, column names, and PL/SQL variables

= Entering and storing SQL and PL/SQL source code

The character encoding scheme used by the database is defined as part of the CREATE
DATABASE statement. All SQL CHAR data type columns (CHAR, CLOB, VARCHAR2, and

LONG), including columns in the data dictionary, have their data stored in the
database character set. In addition, the choice of database character set determines
which characters can name objects in the database. SQL NCHAR data type columns
(NCHAR, NCLOB, and NVARCHAR?2) use the national character set.

After the database is created, you cannot change the character sets, with some

exceptions, without re-creating the database.

Consider the following questions when you choose an Oracle Database character set

for the database:
= What languages does the database need to support now?

= What languages does the database need to support in the future?

2-10 Oracle Database Globalization Support Guide

Choosing an Oracle Database Character Set

» Is the character set available on the operating system?

= What character sets are used on clients?

= How well does the application handle the character set?

= What are the performance implications of the character set?
= What are the restrictions associated with the character set?

The Oracle Database character sets are listed in "Character Sets" on page A-5. They are
named according to the languages and regions in which they are used. Some character
sets that are named for a region are also listed explicitly by language.

If you want to see the characters that are included in a character set, then:

s Check national, international, or vendor product documentation or standards
documents

s Use Oracle Locale Builder

This section contains the following topics:

s Current and Future Language Requirements

s Client Operating System and Application Compatibility

s Character Set Conversion Between Clients and the Server

s Performance Implications of Choosing a Database Character Set
= Restrictions on Database Character Sets

s Choosing a National Character Set

= Summary of Supported Data Types

See Also:
s "UCS-2 Encoding" on page 6-3
s "Choosing a National Character Set" on page 2-14

s "Changing the Character Set After Database Creation" on
page 2-15

= Appendix A, "Locale Data"
s Chapter 13, "Customizing Locale Data"

Current and Future Language Requirements

Several character sets may meet your current language requirements. Consider future
language requirements when you choose a database character set. If you expect to
support additional languages in the future, then choose a character set that supports
those languages to prevent the need to migrate to a different character set later.

Client Operating System and Application Compatibility

The database character set is independent of the operating system because Oracle
Database has its own globalization architecture. For example, on an English Windows
operating system, you can create and run a database with a Japanese character set.
However, when an application in the client operating system accesses the database,
the client operating system must be able to support the database character set with
appropriate fonts and input methods. For example, you cannot insert or retrieve
Japanese data on the English Windows operating system without first installing a

Choosing a Character Set 2-11

Choosing an Oracle Database Character Set

Japanese font and input method. Another way to insert and retrieve Japanese data is
to use a Japanese operating system remotely to access the database server.

Character Set Conversion Between Clients and the Server

If you choose a database character set that is different from the character set on the
client operating system, then the Oracle Database can convert the operating system
character set to the database character set. Character set conversion has the following
disadvantages:

s Potential data loss
s Increased overhead

Character set conversions can sometimes cause data loss. For example, if you are
converting from character set A to character set B, then the destination character set B
must have the same character set repertoire as A. Any characters that are not available
in character set B are converted to a replacement character. The replacement character
is often specified as a question mark or as a linguistically related character. For
example, & (a with an umlaut) may be converted to a. If you have distributed
environments, then consider using character sets with similar character repertoires to
avoid loss of data.

Character set conversion may require copying strings between buffers several times
before the data reaches the client. The database character set should always be a
superset or equivalent of the native character set of the client's operating system. The
character sets used by client applications that access the database usually determine
which superset is the best choice.

If all client applications use the same character set, then that character set is usually the
best choice for the database character set. When client applications use different
character sets, the database character set should be a superset of all the client character
sets. This ensures that every character is represented when converting from a client
character set to the database character set.

See Also: Chapter 11, "Character Set Migration"

Performance Implications of Choosing a Database Character Set

For best performance, choose a character set that avoids character set conversion and
uses the most efficient encoding for the languages desired. Single-byte character sets
result in better performance than multibyte character sets, and they also are the most
efficient in terms of space requirements. However, single-byte character sets limit how
many languages you can support.

Restrictions on Database Character Sets
ASClI-based character sets are supported only on ASCII-based platforms. Similarly,
you can use an EBCDIC-based character set only on EBCDIC-based platforms.

The database character set is used to identify SQL and PL/SQL source code. In order
to do this, it must have either EBCDIC or 7-bit ASCII as a subset, whichever is native
to the platform. Therefore, it is not possible to use a fixed-width, multibyte character
set as the database character set. Currently, only the AL16UTF16 character set cannot
be used as a database character set.

Restrictions on Character Sets Used to Express Names
Table 2-5 lists the restrictions on the character sets that can be used to express names.

2-12 Oracle Database Globalization Support Guide

Choosing an Oracle Database Character Set

Table 2-5 Restrictions on Character Sets Used to Express Names

Variable

Name Single-Byte Width Comments

Column names Yes Yes -

Schema objects Yes Yes -

Comments Yes Yes -

Database link names Yes No -

Database names Yes No -

File names (datafile, log file, control Yes No -

file, initialization parameter file)

Instance names Yes No -

Directory names Yes No -

Keywords Yes No Can be expressed in English ASCII or EBCDIC
characters only

Recovery Manager file names Yes No -

Rollback segment names Yes No The ROLLBACK_SEGMENTS parameter does not
support NLS

Stored script names Yes Yes -

Tablespace names Yes No -

For a list of supported string formats and character sets, including LOB data (LOB,
BLOB, CLOB, and NCLOB), see Table 2-7 on page 2-14.

Database Character Set Statement of Direction

Choosing Unic

A list of character sets has been compiled in Table A—4, " Recommended ASCII
Database Character Sets" and Table A-5, " Recommended EBCDIC Database Character
Sets" that Oracle strongly recommends for usage as the database character set. Other
Oracle-supported character sets that do not appear on this list can continue to be used
in Oracle Database 11g Release 2, but may be desupported in a future release. Starting
with Oracle Database 11g Release 1, the choice for the database character set is limited
to this list of recommended character sets in common installation paths of Oracle
Universal Installer and Oracle Database Configuration Assistant. Customers are still
able to create new databases using custom installation paths and migrate their existing
databases even if the character set is not on the recommended list. However, Oracle
suggests that customers migrate to a recommended character set as soon as possible.
At the top of the list of character sets that Oracle recommends for all new system
deployment, is the Unicode character set AL32UTFS.

ode as a Database Character Set

Oracle recommends using Unicode for all new system deployments. Migrating legacy
systems to Unicode is also recommended. Deploying your systems today in Unicode
offers many advantages in usability, compatibility, and extensibility. Oracle Database
enables you to deploy high-performing systems faster and more easily while utilizing
the advantages of Unicode. Even if you do not need to support multilingual data
today, nor have any requirement for Unicode, it is still likely to be the best choice for a
new system in the long run and will ultimately save you time and money as well as

Choosing a Character Set 2-13

Choosing an Oracle Database Character Set

give you competitive advantages in the long term. See Chapter 6, "Supporting
Multilingual Databases with Unicode" for more information about Unicode.

Choosing a National Character Set

The term national character set refers to an alternative character set that enables you
to store Unicode character data in a database that does not have a Unicode database
character set. Other reasons for choosing a national character set are:

s The properties of a different character encoding scheme may be more desirable for
extensive character processing operations.

s Programming in the national character set is easier.

SQL NCHAR, NVARCHAR2, and NCLOB data types support Unicode data only. You can
use either the UTF8 or the AL16UTF16 character set. The default is AL16UTF16.

See Also: Chapter 6, "Supporting Multilingual Databases with
Unicode"

Summary of Supported Data Types
Table 2-6 lists the data types that are supported for different encoding schemes.

Table 2-6 SQL Data Types Supported for Encoding Schemes

Data Type Single Byte Multibyte Non-Unicode Multibyte Unicode
CHAR Yes Yes Yes
VARCHAR?2 Yes Yes Yes
NCHAR No No Yes
NVARCHAR2 No No Yes
BLOB Yes Yes Yes
CLOB Yes Yes Yes
LONG Yes Yes Yes
NCLOB No No Yes

Note: BLOBs process characters as a series of byte sequences.
The data is not subject to any NLS-sensitive operations.

Table 2-7 lists the SQL data types that are supported for abstract data types.

Table 2-7 Abstract Data Type Support for SQL Data Types

Abstract Data Type CHAR NCHAR BLOB CLOB NCLOB
Object Yes Yes Yes Yes Yes
Collection Yes Yes Yes Yes Yes

You can create an abstract data type with the NCHAR attribute as follows:

SQL> CREATE TYPE tpl AS OBJECT (a NCHAR(10));
Type created.

SQL> CREATE TABLE tl (a tpl);

Table created.

2-14 Oracle Database Globalization Support Guide

Monolingual Database Scenario

See Also: Oracle Database Object-Relational Developer’s Guide for
more information about objects and collections

Changing the Character Set After Database Creation

You may want to change the database character set after the database has been
created. For example, you may find that the number of languages that need to be
supported in your database has increased. In most cases, you must do a full
export/import to properly convert all data to the new character set. However, if, and
only if, the new character set is a strict superset of all of the schema data, then it is
possible to use the CSALTER script to expedite the change in the database character
set.

See Also:
s Chapter 11, "Character Set Migration"

» Oracle Database Upgrade Guide for more information about
exporting and importing data

» Oracle Streams Concepts and Administration for information
about using Streams to change the character set of a database
while the database remains online

Monolingual Database Scenario

The simplest example of a database configuration is a client and a server that run in
the same language environment and use the same character set. This monolingual
scenario has the advantage of fast response because the overhead associated with
character set conversion is avoided. Figure 2-3 shows a database server and a client
that use the same character set. The Japanese client and the server both use the
JA16EUC character set.

Figure 2-3 Monolingual Database Scenario

Japanese
Server
(JA16EUC)

Unix
(JA16EUC)

You can also use a multitier architecture. Figure 2—4 shows an application server
between the database server and the client. The application server and the database
server use the same character set in a monolingual scenario. The server, the
application server, and the client use the JAI6EUC character set.

Choosing a Character Set 2-15

Monolingual Database Scenario

Figure 2-4 Multitier Monolingual Database Scenario

oo

Nl

Japanese
Server
(JA16EUC)

Application :la

Server
(JA16EUC)

Il

Character Set Conversion in a Monolingual Scenario

Character set conversion may be required in a client/server environment if a client
application resides on a different platform than the server and if the platforms do not
use the same character encoding schemes. Character data passed between client and
server must be converted between the two encoding schemes. Character conversion
occurs automatically and transparently through Oracle Net.

You can convert between any two character sets. Figure 2-5 shows a server and one
client with the JA16EUC Japanese character set. The other client uses the JA165]IS
Japanese character set.

Figure 2-5 Character Set Conversion

Japanese
Server
(JA16EUC)

Unix
(JAT6EUC)

Character
Conversion

Windows :lz

(JA16SJIS)

When a target character set does not contain all of the characters in the source data,
replacement characters are used. If, for example, a server uses US7ASCII and a
German client uses WESISO8859P1, then the German character 3 is replaced with ?
and & is replaced with a.

Replacement characters may be defined for specific characters as part of a character set
definition. When a specific replacement character is not defined, a default replacement
character is used. To avoid the use of replacement characters when converting from a
client character set to a database character set, the server character set should be a
superset of all the client character sets.

Figure 2-6 shows that data loss occurs when the database character set does not
include all of the characters in the client character set. The database character set is
US7ASCIL. The client's character set is WESMSWIN1252, and the language used by the
client is German. When the client inserts a string that contains %, the database replaces
8 with ?, resulting in lost data.

2-16 Oracle Database Globalization Support Guide

Multilingual Database Scenarios

Figure 2-6 Data Loss During Character Conversion

American
Database
Server

(US7ASCII)

Character
Conversion

B

German]2

Windows
(WEBMSWIN1252)

If German data is expected to be stored on the server, then a database character set
that supports German characters should be used for both the server and the client to
avoid data loss and conversion overhead.

When one of the character sets is a variable-width multibyte character set, conversion
can introduce noticeable overhead. Carefully evaluate your situation and choose
character sets to avoid conversion as much as possible.

Multilingual Database Scenarios

Multilingual support can be restricted or unrestricted. This section contains the
following topics:

= Restricted Multilingual Support
s Unrestricted Multilingual Support

Restricted Multilingual Support

Some character sets support multiple languages because they have related writing
systems or scripts. For example, the Oracle Database WESISO8859P1 character set
supports the following Western European languages:

Catalan
Danish
Dutch
English
Finnish
French
German
Icelandic
Italian
Norwegian
Portuguese
Spanish

Choosing a Character Set 2-17

Multilingual Database Scenarios

Swedish

These languages all use a Latin-based writing script.

When you use a character set that supports a group of languages, your database has
restricted multilingual support.

Figure 2-7 shows a Western European server that used the WE8ISO8850P1 Oracle
Database character set, a French client that uses the same character set as the server,
and a German client that uses the WESDEC character set. The German client requires
character conversion because it is using a different character set than the server.

Figure 2-7 Restricted Multilingual Support

(WE8ISO8859P1)

Western
European
Server

Character
Conversion

French]2 German ;@\

(WEB8IS0O8859P1) (WE8DEC)

Unrestricted Multilingual Support

If you need unrestricted multilingual support, then use a universal character set such
as Unicode for the server database character set. Unicode has two major encoding
schemes:

» UTF-16: Each character is either 2 or 4 bytes long.
» UTF-8: Each character takes 1 to 4 bytes to store.

Oracle Database provides support for UTE-8 as a database character set and both
UTF-8 and UTF-16 as national character sets.

Character set conversion between a UTF-8 database and any single-byte character set
introduces very little overhead.

Conversion between UTF-8 and any multibyte character set has some overhead. There
is no data loss from conversion, with the following exceptions:

= Some multibyte character sets do not support user-defined characters during
character set conversion to and from UTF-8.

= Some Unicode characters are mapped to more than one character in another
character set. For example, one Unicode character is mapped to three characters in
the JA16SJIS character set. This means that a round-trip conversion may not result
in the original JA16S]JIS character.

2-18 Oracle Database Globalization Support Guide

Multilingual Database Scenarios

Figure 2-8 shows a server that uses the AL32UTF8 Oracle Database character set that
is based on the Unicode UTF-8 character set.

Figure 2-8 Unrestricted Multilingual Support Scenario in a Client/Server Configuration

German
Client
(WEBDEC)

French
Client
(WEB8IS08859P1)

Character Character
Conversion Conversion

Unicode
Database
(AL32UTF8)

Character Character
Conversion Conversion

] =

Japanese Japanese
Client Client
(JA16EUC) (JA16SJIS)

There are four clients:

= A French client that uses the WESISO8859P1 Oracle Database character set
= A German client that uses the WESDEC character set

= AJapanese client that uses the JA16EUC character set

= A Japanese client that used the JA16SJIS character set

Character conversion takes place between each client and the server, but there is no
data loss because AL32UTES is a universal character set. If the German client tries to
retrieve data from one of the Japanese clients, then all of the Japanese characters in the
data are lost during the character set conversion.

Figure 2-9 shows a Unicode solution for a multitier configuration.

Choosing a Character Set 2-19

Multilingual Database Scenarios

Figure 2-9 Multitier Unrestricted Multilingual Support Scenario in a Multitier
Configuration

Client

Apglication I%

erver
(UTF-8)

Unicode

Database
(AL32UTF8)

Japanese
(UTF-8) Client

Browser

The database, the application server, and each client use the AL32UTES8 character set.
This eliminates the need for character conversion even though the clients are French,
German, and Japanese.

See Also: Chapter 6, "Supporting Multilingual Databases with
Unicode"

2-20 Oracle Database Globalization Support Guide

3

Setting Up a Globalization Support
Environment

This chapter tells how to set up a globalization support environment. It includes the
following topics:

Setting NLS Parameters

Choosing a Locale with the NLS_LANG Environment Variable
Character Set Parameter

NLS Database Parameters
Language and Territory Parameters
Date and Time Parameters

Calendar Definitions

Numeric and List Parameters
Monetary Parameters

Linguistic Sort Parameters
Character Set Conversion Parameter

Length Semantics

Setting NLS Parameters

NLS (National Language Support) parameters determine the locale-specific behavior
on both the client and the server. NLS parameters can be specified in the following
ways:

As initialization parameters on the server

You can include parameters in the initialization parameter file to specify a default
session NLS environment. These settings have no effect on the client side; they
control only the server's behavior. For example:

NLS_TERRITORY = "CZECH REPUBLIC"

As environment variables on the client

You can use NLS environment variables, which may be platform-dependent, to
specify locale-dependent behavior for the client and also to override the default
values set for the session in the initialization parameter file. For example, on a
UNIX system:

Setting Up a Globalization Support Environment 3-1

Setting NLS Parameters

Q

% setenv NLS_SORT FRENCH

s With the ALTER SESSION statement

You can use NLS parameters that are set in an ALTER SESSION statement to
override the default values that are set for the session in the initialization
parameter file or set by the client with environment variables.

ALTER SESSION SET NLS_SORT = FRENCH;

See Also: Oracle Database SQL Language Reference for more
information about the ALTER SESSION statement

s In SQL functions

You can use NLS parameters explicitly to hardcode NLS behavior within a SQL
function. This practice overrides the default values that are set for the session in
the initialization parameter file, set for the client with environment variables, or
set for the session by the ALTER SESSION statement. For example:

TO_CHAR (hiredate, 'DD/MON/YYYY', 'nls_date_language = FRENCH')

See Also: Oracle Database SQL Language Reference for more
information about SQL functions, including the TO_CHAR function

Table 3-1 shows the precedence order of the different methods of setting NLS
parameters. Higher priority settings override lower priority settings. For example, a
default value has the lowest priority and can be overridden by any other method.

Table 3—-1 Methods of Setting NLS Parameters and Their Priorities

Priority Method

1 (highest) Explicitly set in SQL functions

2 Set by an ALTER SESSION statement

3 Set as an environment variable

4 Specified in the initialization parameter file
5 Default

Table 3-2 lists the available NLS parameters. Because the SQL function NLS
parameters can be specified only with specific functions, the table does not show the
SQL function scope.

Table 3-2 NLS Parameters

Scope:

| = Initialization Parameter File
E = Environment Variable

Parameter Description Default A = ALTER SESSION
NLS_CALENDAR Calendar system Gregorian ILE A
NLS_COMP SQL, PL /SQL operator BINARY LE A
comparison
NLS_CREDIT Credit accounting symbol Derived from E

NLS_TERRITORY

NLS_CURRENCY Local currency symbol Derived from LE A
NLS_TERRITORY

3-2 Oracle Database Globalization Support Guide

Choosing a Locale with the NLS_LANG Environment Variable

Table 3-2 (Cont.) NLS Parameters

Scope:

| = Initialization Parameter File
E = Environment Variable
Parameter Description Default A = ALTER SESSION

NLS_DATE_FORMAT Date format Derived from ILE A
NLS_TERRITORY

NLS_DATE_LANGUAGE Language for day and month Derived from LE A

names NLS_LANGUAGE
NLS_DEBIT Debit accounting symbol Derived from E
NLS_TERRITORY
NLS_ISO_CURRENCY ISO international currency Derived from LE A
symbol NLS_TERRITORY
NLS_LANG Language, territory, character AMERICAN_ E
See Also: "Choosing a set %Siégil
Locale with the NLS_LANG
Environment Variable" on
page 3-3
NLS_LANGUAGE Language Derived from ILA
NLS_LANG
NLS_LENGTH_ How strings are treated BYTE LE A
SEMANTICS
NLS_LIST_SEPARATOR Character that separates items Derived from E
in a list NLS_TERRITORY
NLS_MONETARY_ Monetary symbol for dollar Derived from E
CHARACTERS and cents (or their NLS_TERRITORY
equivalents)
NLS_NCHAR_CONV_ Reports data loss during a FALSE LA
EXCP character type conversion
NLS_NUMERIC_ Decimal character and group Derived from ILLE, A
CHARACTERS separator NLS_TERRITORY
NLS_SORT Character sort sequence Derived from ILE A
NLS_LANGUAGE
NLS_TERRITORY Territory Derived from ILA
NLS_LANG
NLS_TIMESTAMP_ Timestamp Derived from ILE A
FORMAT NLS_TERRITORY
NLS_TIMESTAMP_TZ_ Timestamp with time zone Derived from LE A
FORMAT NLS_TERRITORY
NLS_DUAL_CURRENCY Dual currency symbol Derived from ILE A

NLS_TERRITORY

Choosing a Locale with the NLS_LANG Environment Variable

A'locale is a linguistic and cultural environment in which a system or program is
running. Setting the NLS_LANG environment parameter is the simplest way to specify
locale behavior for Oracle Database software. It sets the language and territory used
by the client application and the database server. It also sets the client's character set,
which is the character set for data entered or displayed by a client program.

Setting Up a Globalization Support Environment 3-3

Choosing a Locale with the NLS_LANG Environment Variable

NLS_LANG is set as an environment variable on UNIX platforms. NLS_LANG is set in
the registry on Windows platforms.

The NLS_LANG parameter has three components: language, territory, and character
set. Specify it in the following format, including the punctuation:

NLS_LANG = language_territory.charset

For example, if the Oracle Universal Installer does not populate NLS_LANG, then its
value by default is AMERICAN_AMERICA.US7ASCII. The language is AMERICAN, the
territory is AMERICA, and the character set is US7ASCII. The values in NLS_LANG and
other NLS parameters are case-insensitive.

Each component of the NLS_LANG parameter controls the operation of a subset of
globalization support features:

» language

Specifies conventions such as the language used for Oracle Database messages,
sorting, day names, and month names. Each supported language has a unique
name; for example, AMERICAN, FRENCH, or GERMAN. The language argument
specifies default values for the territory and character set arguments. If the
language is not specified, then the value defaults to AMERICAN.

m territory

Specifies conventions such as the default date, monetary, and numeric formats.
Each supported territory has a unique name; for example, AMERICA, FRANCE, or
CANADA. If the territory is not specified, then the value is derived from the
language value.

m charset

Specifies the character set used by the client application (normally the Oracle
Database character set that corresponds to the user's terminal character set or the
OS character set). Each supported character set has a unique acronym, for
example, US7TASCII, WE8IS08859P1, WESDEC, WESMSWIN1252, or JA16EUC.
Each language has a default character set associated with it.

Note: All components of the NLS_LANG definition are optional;
any item that is not specified uses its default value. If you specify
territory or character set, then you must include the preceding
delimiter [underscore (_) for territory, period (.) for character set].
Otherwise, the value is parsed as a language name.

For example, to set only the territory portion of NLS_LANG, use the
following format: NLS_LANG=_JAPAN

The three components of NLS_LANG can be specified in many combinations, as in the
following examples:

NLS_LANG = AMERICAN_AMERICA.WESMSWIN1252
NLS_LANG = FRENCH_CANADA.WE8ISO8859P1

NLS_LANG

JAPANESE_JAPAN . JAL6EUC
Note that illogical combinations can be set but do not work properly. For example, the

following specification tries to support Japanese by using a Western European
character set:

3-4 Oracle Database Globalization Support Guide

Choosing a Locale with the NLS_LANG Environment Variable

NLS_LANG = JAPANESE_JAPAN.WESIS08859P1

Because the WESISO8859P1 character set does not support any Japanese characters,
you cannot store or display Japanese data if you use this definition for NLS_LANG.
The rest of this section includes the following topics:

= Specifying the Value of NLS_LANG

s Overriding Language and Territory Specifications

m Locale Variants

See Also:

= Appendix A, "Locale Data" for a complete list of supported
languages, territories, and character sets

= Your operating system documentation for information about
additional globalization settings that may be necessary for your
platform

Specifying the Value of NLS_LANG

In a UNIX operating system C-shell session, you can specify the value of NLS_LANG by
entering a statement similar to the following example:

% setenv NLS_LANG FRENCH_FRANCE.WESIS08859P1
Because NLS_LANG is an environment variable, it is read by the client application at

startup time. The client communicates the information defined by NLS_LANG to the
server when it connects to the database server.

The following examples show how date and number formats are affected by the NLS_
LANG parameter.

Example 3—1 Setting NLS_LANG to American_America. WE8ISO8859P1

Set NLS_LANG so that the language is AMERICAN, the territory is AMERICA, and the
Oracle Database character set is WE8IS08859P1:

% setenv NLS_LANG American_America.WE8ISO8859P1

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST NAME HIRE_DATE SALARY
Sciarra 30-SEP-05 962.5
Urman 07-MAR-06 975
Popp 07-DEC-07 862.5

Example 3-2 Setting NLS_LANG to French_France.WE8ISO8859P1

Set NLS_LANG so that the language is FRENCH, the territory is FRANCE, and the Oracle
Database character set is WESISO8859P1:

% setenv NLS_LANG French_France.WE8IS08859P1

Setting Up a Globalization Support Environment 3-5

Choosing a Locale with the NLS_LANG Environment Variable

Then the query shown in Example 3-1 returns the following output:

LAST NAME HIRE_DATE SALARY
Sciarra 30/09/05 962,5
Urman 07/03/06 975
Popp 07/12/07 862,5

Note that the date format and the number format have changed. The numbers have
not changed, because the underlying data is the same.

Overriding Language and Territory Specifications

The NLS_LANG parameter sets the language and territory environment used by both
the server session (for example, SQL command execution) and the client application
(for example, display formatting in Oracle Database tools). Using this parameter
ensures that the language environments of both the database and the client application
are automatically the same.

The language and territory components of the NLS_LANG parameter determine the
default values for other detailed NLS parameters, such as date format, numeric
characters, and linguistic sorting. Each of these detailed parameters can be set in the
client environment to override the default values if the NLS_LANG parameter has
already been set.

If the NLS_LANG parameter is not set, then the server session environment remains
initialized with values of NL.S_ LANGUAGE, NLLS_ TERRITORY, and other NLS instance
parameters from the initialization parameter file. You can modify these parameters
and restart the instance to change the defaults.

You might want to modify the NLS environment dynamically during the session. To
do so, you can use the ALTER SESSION statement to change NLS_LANGUAGE, NLS_
TERRITORY, and other NLS parameters.

Note: You cannot modify the setting for the client character set
with the ALTER SESSION statement.

The ALTER SESSION statement modifies only the session environment. The local
client NLS environment is not modified, unless the client explicitly retrieves the new
settings and modifies its local environment.

See Also:

s "Overriding Default Values for NLS_LANGUAGE and NLS_
TERRITORY During a Session" on page 3-14

» Oracle Database SQL Language Reference

Locale Variants

Before Oracle Database 10g, Oracle defined language and territory definitions
separately. This resulted in the definition of a territory being independent of the
language setting of the user. Since Oracle Database 10g, some territories can have
different date, time, number, and monetary formats based on the language setting of a
user. This type of language-dependent territory definition is called a locale variant.

3-6 Oracle Database Globalization Support Guide

Choosing a Locale with the NLS_LANG Environment Variable

For the variant to work properly, both NL.S_ TERRITORY and NLS_LANGUAGE must be

specified.

Table 3-3 shows the territories that have been enhanced to support variations.

Table 3-3 Oracle Database Locale Variants

Oracle Database Territory

Oracle Database Language

BELGIUM

BELGIUM

BELGIUM

CANADA

CANADA

DJIBOUTI

DJIBOUTI

FINLAND

FINLAND

HONG KONG

HONG KONG

INDIA

INDIA

INDIA

INDIA

INDIA

INDIA

INDIA

INDIA

INDIA

INDIA

INDIA

INDIA

LUXEMBOURG

LUXEMBOURG

SINGAPORE

SINGAPORE

SINGAPORE

SINGAPORE

SWITZERLAND

SWITZERLAND

SWITZERLAND

DUTCH

FRENCH

GERMAN

FRENCH

ENGLISH

FRENCH

ARABIC

FINLAND

SWEDISH

TRADITIONAL CHINESE

ENGLISH

ENGLISH

ASSAMESE

BANGLA

GUJARATTI

HINDI

KANNADA

MALAYALAM

MARATHT

ORIYA

PUNJABI

TAMIL

TELUGU

GERMAN

FRENCH

ENGLISH

MALAY

SIMPLIFIED CHINESE

TAMIL

GERMAN

FRENCH

ITALTAN

Setting Up a Globalization Support Environment

3-7

Character Set Parameter

Should the NLS_LANG Setting Match the Database Character Set?

The NLS_LANG character set should reflect the setting of the operating system
character set of the client. For example, if the database character set is AL32UTFS8 and
the client is running on a Windows operating system, then you should not set
AL32UTES as the client character set in the NLS_LANG parameter because there are no
UTF-8 WIN32 clients. Instead, the NLS_LANG setting should reflect the code page of
the client. For example, on an English Windows client, the code page is 1252. An
appropriate setting for NLS_LANG is AMERICAN_AMERICA.WE8MSWIN1252.

Setting NL.S_LANG correctly enables proper conversion from the client operating
system character set to the database character set. When these settings are the same,
Oracle Database assumes that the data being sent or received is encoded in the same
character set as the database character set, so character set validation or conversion
may not be performed. This can lead to corrupt data if the client code page and the
database character set are different and conversions are necessary.

See Also: Oracle Database Installation Guide for Microsoft Windows
for more information about commonly used values of the NLS_
LANG parameter in Windows

Character Set Parameter

Oracle provides an environment variable, NL.S_0S_CHARSET, for handling the
situation where the client OS character set is different from the Oracle NLS client
character set.

NLS_OS_CHARSET Environment Variable

The NLS_0S_CHARSET environment variable should be set on Oracle client
installations if the client OS character set is different from the Oracle NLS client
character set specified by the NLS_LANG environment variable. The client OS character
set is the character set used to represent characters in the OS fields like machine name,
program executable name and logged on user name. On UNIX platforms, this is
usually the character set specified in the LANG environment variable or the LC_ALL
environment variable. An example of setting NL.S_0S_CHARSET would be if the locale
charset specified in LANG or LC_ALL in a Linux client could be zh_CN (simplified
Chinese) and the Oracle client application charset specified in NLS_LANG could be
UTF8. In this case, the NLS_0OS_CHARSET variable must be set to the equivalent Oracle
charset ZHT16GBK.

The NLS_0S_CHARSET environment variable must be set to the Oracle character set
name corresponding to the client OS character set.

If NLS_LANG corresponds to the OS character set, NLS_0S_CHARSET does not need to
be set. NLS_0S_CHARSET does not need to be set and is ignored on Windows
platforms.

NLS Database Parameters

When a new database is created during the execution of the CREATE DATABASE
statement, the NLS-related database configuration is established. The current NLS
instance parameters are stored in the data dictionary along with the database and
national character sets. The NLS instance parameters are read from the initialization
parameter file at instance startup.

You can find the values for NLS parameters by using:

3-8 Oracle Database Globalization Support Guide

Language and Territory Parameters

= NLS Data Dictionary Views
s NLS Dynamic Performance Views

s OCINIsGetInfo() Function

NLS Data Dictionary Views

Applications can check the session, instance, and database NLS parameters by
querying the following data dictionary views:

s NLS_SESSION_PARAMETERS shows the NLS parameters and their values for the
session that is querying the view. It does not show information about the character
set.

s NLS_INSTANCE_PARAMETERS shows the current NLS instance parameters that
have been explicitly set and the values of the NLS instance parameters.

= NLS_DATABASE_PARAMETERS shows the values of the NLS parameters for the
database. The values are stored in the database.

NLS Dynamic Performance Views
Applications can check the following NLS dynamic performance views:

= VSNLS_VALID_VALUES lists values for the following NLS parameters: NLS_
LANGUAGE, NLS_SORT, NLS_ TERRITORY, NLS_CHARACTERSET

= VSNLS_PARAMETERS shows current values of the following NLS parameters:
NLS_CALENDAR, NLS_CHARACTERSET, NLS_CURRENCY, NLS_DATE_FORMAT,
NLS_DATE_LANGUAGE, NLS_TISO_CURRENCY, NLS_LANGUAGE, NLS_NUMERIC_
CHARACTERS, NLS_SORT, NLS_TERRITORY, NLS_NCHAR_CHARACTERSET, NLS_
COMP, NLS_LENGTH_SEMANTICS, NLS_NCHAR_CONV_EXP, NLS_TIMESTAMP_
FORMAT, NLS_TIMESTAMP_TZ_FORMAT,NLS_TIME_FORMAT,NLS_TIME_TZ_
FORMAT

See Also: Oracle Database Reference
OCINIsGetinfo() Function
User applications can query client NLS settings with the OCIN1sGetInfo () function.

See Also: "Getting Locale Information in OCI" on page 10-2 for
the description of OCIN1sGetInfo ()

Language and Territory Parameters

This section contains information about the following parameters:
= NLS_LANGUAGE
= NLS_TERRITORY

NLS_LANGUAGE

Property Description
Parameter type String
Parameter scope Initialization parameter and ALTER SESSION

Setting Up a Globalization Support Environment 3-9

Language and Territory Parameters

Property Description
Default value Derived from NLS_LANG
Range of values Any valid language name

NLS_LANGUAGE specifies the default conventions for the following session
characteristics:

= Language for server messages

» Language for day and month names and their abbreviations (specified in the SQL
functions TO_CHAR and TO_DATE)

= Symbols for equivalents of AM, PM, AD, and BC. (A.M., PM., AD., and B.C. are
valid only if NL.S_ LANGUAGE is set to AMERICAN.)

= Default sorting sequence for character data when ORDER BY is specified. (GROUP
BY uses a binary sort unless ORDER BY is specified.)

s Writing direction
= Affirmative and negative response strings (for example, YES and NO)

The value specified for NLS_LANGUAGE in the initialization parameter file is the
default for all sessions in that instance. For example, to specify the default session
language as French, the parameter should be set as follows:

NLS_LANGUAGE = FRENCH

Consider the following server message:

ORA-00942: table or view does not exist

When the language is French, the server message appears as follows:

ORA-00942: table ou vue inexistante

Messages used by the server are stored in binary-format files that are placed in the
$ORACLE_HOME/product_name/mesg directory, or the equivalent for your
operating system. Multiple versions of these files can exist, one for each supported
language, using the following filename convention:

<product_id><language_abbrev>.MSB

For example, the file containing the server messages in French is called oraf .msb,
because ORA is the product ID (<product_id>) and F is the language abbreviation
(<language_abbrev>) for French. The product_name is rdbms, so it is in the
$ORACLE_HOME/rdbms /mesg directory.

If NLS_LANG is specified in the client environment, then the value of NLS_LANGUAGE
in the initialization parameter file is overridden at connection time.

Messages are stored in these files in one specific character set, depending on the
language and the operating system. If this character set is different from the database
character set, then message text is automatically converted to the database character
set. If necessary, it is then converted to the client character set if the client character set
is different from the database character set. Hence, messages are displayed correctly at
the user's terminal, subject to the limitations of character set conversion.

The language-specific binary message files that are actually installed depend on the
languages that the user specifies during product installation. Only the English binary

3-10 Oracle Database Globalization Support Guide

Language and Territory Parameters

message file and the language-specific binary message files specified by the user are
installed.

The default value of NL.S_LANGUAGE may be specific to the operating system. You can
alter the NL.S_LANGUAGE parameter by changing its value in the initialization
parameter file and then restarting the instance.

See Also: Your operating system-specific Oracle Database
documentation for more information about the default value of
NLS_LANGUAGE

All messages and text should be in the same language. For example, when you run an
Oracle Developer application, the messages and boilerplate text that you see originate
from three sources:

= Messages from the server
= Messages and boilerplate text generated by Oracle Forms
= Messages and boilerplate text generated by the application

NLS_LANGUAGE determines the language used for the first two kinds of text. The
application is responsible for the language used in its messages and boilerplate text.

The following examples show behavior that results from setting NL.S_ LANGUAGE to
different values.

Example 3-3 NLS_LANGUAGE=ITALIAN
Use the ALTER SESSION statement to set NL.S_ LANGUAGE to Italian:

ALTER SESSION SET NLS_LANGUAGE=Italian;

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST NAME HIRE_DATE SALARY
Sciarra 30-SET-05 962.5
Urman 07-MAR-06 975
Popp 07-DIC-07 862.5

Note that the month name abbreviations are in Italian.

See Also: "Overriding Default Values for NLS_LANGUAGE and
NLS_TERRITORY During a Session" on page 3-14 for more
information about using the ALTER SESSION statement

Example 3-4 NLS_LANGUAGE=GERMAN
Use the ALTER SESSION statement to change the language to German:

SQL> ALTER SESSION SET NLS_LANGUAGE=German;

Enter the same SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

Setting Up a Globalization Support Environment 3-11

Language and Territory Parameters

You should see results similar to the following output:

LAST NAME HIRE_DATE SALARY
Sciarra 30-SEP-05 962.5
Urman 07-MRZ-06 975
Popp 07-DEZ-07 862.5

Note that the language of the month abbreviations has changed.

NLS_TERRITORY

Property Description

Parameter type String

Parameter scope Initialization parameter and ALTER SESSION
Default value Derived from NLS_LANG

Range of values Any valid territory name

NLS_TERRITORY specifies the conventions for the following default date and numeric
formatting characteristics:

= Date format

s Decimal character and group separator
= Local currency symbol

= ISO currency symbol

s Dual currency symbol

= First day of the week

» Credit and debit symbols

s ISO week flag

» List separator

The value specified for NL.S_ TERRITORY in the initialization parameter file is the
default for the instance. For example, to specify the default as France, the parameter
should be set as follows:

NLS_TERRITORY = FRANCE
When the territory is FRANCE, numbers are formatted using a comma as the decimal
character.

You can alter the NLS_TERRITORY parameter by changing the value in the
initialization parameter file and then restarting the instance. The default value of NLS_
TERRITORY can be specific to the operating system.

If NLS_LANG is specified in the client environment, then the value of NLS_TERRITORY
in the initialization parameter file is overridden at connection time.

The territory can be modified dynamically during the session by specifying the new
NLS_TERRITORY value in an ALTER SESSION statement. Modifying NLS_

3-12 Oracle Database Globalization Support Guide

Language and Territory Parameters

TERRITORY resets all derived NLS session parameters to default values for the new
territory.

To change the territory to France during a session, issue the following ALTER
SESSION statement:

ALTER SESSION SET NLS_TERRITORY = France;

The following examples show behavior that results from different settings of NL.S_
TERRITORY and NLS_LANGUAGE.

Example 3-5 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=AMERICA
Enter the following SELECT statement:

SQL> SELECT TO_CHAR (salary, 'L99G999D99') salary FROM employees;
When NLS_TERRITORY is set to AMERICA and NLS_LANGUAGE is set to AMERICAN,
results similar to the following should appear:

SALARY

$24,000.00
$17,000.00
$17,000.00

Example 3-6 NLS_LANGUAGE=AMERICAN, NLS_TERRITORY=GERMANY
Use an ALTER SESSION statement to change the territory to Germany:
ALTER SESSION SET NLS_TERRITORY = Germany;

Session altered.

Enter the same SELECT statement as before:

SQL> SELECT TO_CHAR (salary, 'L99G999D99') salary FROM employees;

You should see results similar to the following output:

SALARY

€24.000,00
€17.000,00
€17.000,00

Note that the currency symbol has changed from $ to €. The numbers have not
changed because the underlying data is the same.

See Also: "Overriding Default Values for NLS_LANGUAGE and
NLS_TERRITORY During a Session" on page 3-14 for more
information about using the ALTER SESSION statement

Example 3-7 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=GERMANY
Use an ALTER SESSION statement to change the language to German:

ALTER SESSION SET NLS_LANGUAGE = German;
Sitzung wurde gedndert.

Note that the server message now appears in German.
Enter the same SELECT statement as before:

SQL> SELECT TO_CHAR (salary, 'L99G999D99') salary FROM employees;

Setting Up a Globalization Support Environment 3-13

Language and Territory Parameters

You should see the same results as in Example 3-6:

SALARY

€24.000,00
€17.000,00
€17.000,00

Example 3-8 NLS_LANGUAGE=GERMAN, NLS_TERRITORY=AMERICA
Use an ALTER SESSION statement to change the territory to America:
ALTER SESSION SET NLS_TERRITORY = America;

Sitzung wurde gedndert.

Enter the same SELECT statement as in the other examples:

SQL> SELECT TO_CHAR (salary, 'L99G999D99') salary FROM employees;

You should see results similar to the following output:

SALARY

$24,000.00
$17,000.00
$17,000.00

Note that the currency symbol changed from € to $ because the territory changed
from Germany to America.

Overriding Default Values for NLS_LANGUAGE and NLS_TERRITORY During a
Session

Default values for NLS_ LANGUAGE and NL.S_ TERRITORY and default values for
specific formatting parameters can be overridden during a session by using the ALTER
SESSION statement.

Example 3-9 NLS_LANG=ITALIAN_ITALY.WESDEC

Set the NLS_LANG environment variable so that the language is Italian, the territory is
Italy, and the character set is WESDEC:

% setenv NLS_LANG Italian_Italy.WE8DEC

Enter a SELECT statement:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST NAME HIRE_DATE SALARY
Sciarra 30-SET-05 962,5
Urman 07-MAR-06 975
Popp 07-DIC-07 862,5

Note the language of the month abbreviations and the decimal character.

3-14 Oracle Database Globalization Support Guide

Date and Time Parameters

Example 3-10 Change Language, Date Format, and Decimal Character

Use ALTER SESSION statements to change the language, the date format, and the
decimal character:

SQL> ALTER SESSION SET NLS_LANGUAGE=german;
Session wurde gedndert.

SQL> ALTER SESSION SET NLS_DATE_FORMAT='DD.MON.YY';
Session wurde gedndert.

SQL> ALTER SESSION SET NLS_NUMERIC_CHARACTERS='.,';
Session wurde gedndert.

Enter the SELECT statement shown in Example 3-9:

SQL> SELECT last_name, hire_date, ROUND(salary/8,2) salary FROM employees;

You should see results similar to the following output:

LAST NAME HIRE_DATE SALARY
Sciarra 30.SEP.05 962.5
Urman 07.MRZ.06 975
Popp 07.DEZ.07 862.5

Note that the language of the month abbreviations is German and the decimal
character is a period.

The behavior of the NLS_LANG environment variable implicitly determines the
language environment of the database for each session. When a session connects to a
database, an ALTER SESSION statement is automatically executed to set the values of
the database parameters NLS_LANGUAGE and NLS_TERRITORY to those specified by
the language and territory arguments of NLS_LANG. If NLS_LANG is not defined,
then no implicit ALTER SESSION statement is executed.

When NLS_LANG is defined, the implicit ALTER SESSION is executed for all instances
to which the session connects, for both direct and indirect connections. If the values of
NLS parameters are changed explicitly with ALTER SESSION during a session, then
the changes are propagated to all instances to which that user session is connected.

Date and Time Parameters

Oracle Database enables you to control the display of date and time. This section
contains the following topics:

s Date Formats

s Time Formats

Date Formats

Different date formats are shown in Table 3-4.

Setting Up a Globalization Support Environment 3-15

Date and Time Parameters

Table 3—-4 Date Formats

Country Description Example
Estonia dd.mm.yyyy 28.02.2003
Germany dd-mm-rr 28-02-03
Japan rr-mm-dd 03-02-28
UK dd-mon-rr 28-Feb-03
Us dd-mon-rr 28-Feb-03

This section includes the following parameters:
= NLS_DATE_FORMAT
» NLS_DATE_LANGUAGE

NLS_DATE_FORMAT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER
SESSION

Default value Derived from NLS_TERRITORY

Range of values Any valid date format mask

The NLS_DATE_FORMAT parameter defines the default date format to use with the
TO_CHAR and TO_DATE functions. The NLS_TERRITORY parameter determines the
default value of NLS_DATE_FORMAT. The value of NLS_DATE_FORMAT can be any
valid date format mask. For example:

NLS_DATE_FORMAT = "MM/DD/YYYY"
To add string literals to the date format, enclose the string literal with double quotes.

Note that when double quotes are included in the date format, the entire value must
be enclosed by single quotes. For example:

NLS_DATE_FORMAT = '"Date: "MM/DD/YYYY'

Example 3-11 Setting the Date Format to Display Roman Numerals

To set the default date format to display Roman numerals for the month, include the
following line in the initialization parameter file:

NLS_DATE_FORMAT = "DD RM YYYY"

Enter the following SELECT statement:

SELECT TO_CHAR (SYSDATE) currdate FROM DUAL;

You should see the following output if today's date is February 12, 1997:

CURRDATE

12 IT 1997

The value of NLS_ DATE_FORMAT is stored in the internal date format. Each format
element occupies two bytes, and each string occupies the number of bytes in the string

3-16 Oracle Database Globalization Support Guide

Date and Time Parameters

plus a terminator byte. Also, the entire format mask has a two-byte terminator. For
example, "MM/DD/YY" occupies 14 bytes internally because there are three format
elements (month, day, and year), two 3-byte strings (the two slashes), and the
two-byte terminator for the format mask. The format for the value of NLS_DATE_
FORMAT cannot exceed 24 bytes.

You can alter the default value of NLS_DATE_FORMAT by:

s Changing its value in the initialization parameter file and then restarting the
instance

u UﬁnganALTERSESSIONSETNLS_DATE_FORMKTﬁament
See Also: Oracle Database SQL Language Reference for more

information about date format elements and the ALTER SESSION
statement

If a table or index is partitioned on a date column, and if the date format specified by
NLS_DATE_FORMAT does not specify the first two digits of the year, then you must use
the TO_DATE function with a 4-character format mask for the year.

For example:
TO_DATE('11-jan-1997', 'dd-mon-yyyy')
See Also: Oracle Database SQL Language Reference for more

information about partitioning tables and indexes and using TO_
DATE

NLS_DATE_LANGUAGE

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION,
and SQL functions

Default value Derived from NLS_LANGUAGE

Range of values Any valid language name

The NLS_DATE_LANGUAGE parameter specifies the language for the day and month
names produced by the TO_CHAR and TO_DATE functions. NLS_DATE_LANGUAGE
overrides the language that is specified implicitly by NLS_LANGUAGE. NLS_DATE_
LANGUAGE has the same syntax as the NL.S_ LANGUAGE parameter, and all supported
languages are valid values.

NLS_DATE_LANGUAGE also determines the language used for:
= Month and day abbreviations returned by the TO_CHAR and TO_DATE functions

= Month and day abbreviations used by the default date format (NLS_DATE_
FORMAT)

s Abbreviations for AM, PM, AD, and BC

Example 3-12 NLS_DATE_LANGUAGE=FRENCH, Month and Day Names
As an example of how to use NLS_DATE_LANGUAGE, set the date language to French:

ALTER SESSION SET NLS_DATE_LANGUAGE = FRENCH;

Setting Up a Globalization Support Environment 3-17

Date and Time Parameters

Time Formats

Enter a SELECT statement:

SELECT TO_CHAR (SYSDATE, 'Day:Dd Month yyyy') FROM DUAL;

You should see results similar to the following output:

TO_CHAR (SYSDATE, 'DAY : DDMONTHYYYY ")

Vendredi:07 Décembre 2001
When numbers are spelled in words using the TO_CHAR function, the English spelling
is always used. For example, enter the following SELECT statement:

SQL> SELECT TO_CHAR(TO_DATE('12-Oct.-2001'), 'Day: ddspth Month') FROM DUAL;

You should see results similar to the following output:

TO_CHAR (TO_DATE('12-0CT.-2001"), 'DAY:DDSPTHMONTH')

Vendredi: twelfth Octobre

Example 3-13 NLS_DATE_LANGUAGE=FRENCH, Month and Day Abbreviations

Month and day abbreviations are determined by NLS_DATE_LANGUAGE. Enter the
following SELECT statement:

SELECT TO_CHAR (SYSDATE, 'Dy:dd Mon yyyy') FROM DUAL;

You should see results similar to the following output:

TO_CHAR (SYSDATE, 'DY: DDMO

Ve:07 Déc. 2001

Example 3-14 NLS_DATE _LANGUAGE=FRENCH, Default Date Format

The default date format uses the month abbreviations determined by NLS_DATE_
LANGUAGE. For example, if the default date format is DD-MON-YYYY, then insert a date
as follows:

INSERT INTO tablename VALUES ('l12-Févr.-1997');

See Also: Oracle Database SQL Language Reference

Different time formats are shown in Table 3-5.

Table 3-5 Time Formats

Country Description Example
Estonia hh24:mi:ss 13:50:23
Germany hh24:mi:ss 13:50:23

Japan hh24:mi:ss 13:50:23

UK hh24:mi:ss 13:50:23

Us hh:mi:ssxff am 1:50:23.555 PM

This section contains information about the following parameters:

s NLS_TIMESTAMP_FORMAT

3-18 Oracle Database Globalization Support Guide

Date and Time Parameters

s NLS_TIMESTAMP_TZ FORMAT

See Also: Chapter 4, "Datetime Data Types and Time Zone
Support"

NLS_TIMESTAMP_FORMAT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER
SESSION

Default value Derived from NLS_ TERRITORY

Range of values Any valid datetime format mask

NLS_TIMESTAMP_ FORMAT defines the default date format for the TIMESTAMP and
TIMESTAMP WITH LOCAL TIME ZONE data types. The following example shows a
value for NLS_ TIMESTAMP_FORMAT:

NLS_TIMESTAMP_FORMAT = 'YYYY-MM-DD HH:MI:SS.FF'

Example 3-15 Timestamp Format
SQL> SELECT TO_TIMESTAMP('11-nov-2000 01:00:00.336', 'dd-mon-yyyy hh:mi:ss.ff')

FROM DUAL;
You should see results similar to the following output:

TO_TIMESTAMP ('11-NOV-200001:00:00.336"', 'DD-MON-YYYYHH:MI:SS.FF')

2000-11-11 01:00:00.336000000

You can specify the value of NLS_TIMESTAMP_FORMAT by setting it in the
initialization parameter file. You can specify its value for a client as a client
environment variable.

You can also alter the value of NLS_ TIMESTAMP_FORMAT by:

s Changing its value in the initialization parameter file and then restarting the
instance

u Using the ALTER SESSION SET NLS_TIMESTAMP_FORMAT statement
See Also: Oracle Database SQL Language Reference for more

information about the TO_TIMESTAMP function and the ALTER
SESSTION statement

NLS_TIMESTAMP_TZ_FORMAT

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER
SESSION

Default value Derived from NLS_ TERRITORY

Range of values Any valid datetime format mask

Setting Up a Globalization Support Environment 3-19

Calendar Definitions

NLS_TIMESTAMP_ TZ_ FORMAT defines the default date format for the TIMESTAMP
and TIMESTAMP WITH LOCAL TIME ZONE data types. It is used with the TO_CHAR
and TO_TIMESTAMP_ TZ functions.

You can specify the value of NLS_TIMESTAMP_TZ_FORMAT by setting it in the
initialization parameter file. You can specify its value for a client as a client
environment variable.

Example 3-16 Setting NLS_TIMESTAMP_TZ_FORMAT

The format value must be surrounded by quotation marks. For example:
NLS_TIMESTAMP_TZ_FORMAT = 'YYYY-MM-DD HH:MI:SS.FF TZH:TZM'

The following example of the TO_ TIMESTAMP_TZ function uses the format value that
was specified for NLS_TIMESTAMP_TZ_FORMAT:

SQL> SELECT TO_TIMESTAMP_TZ('2000-08-20, 05:00:00.55 America/Los_Angeles',
'yyyy-mm-dd hh:mi:ss.ff TZR') FROM DUAL;

You should see results similar to the following output:

TO_TIMESTAMP_TZ('2000-08-20,05:00:00.55AMERICA/LOS_ANGELES', 'YYYY-MM-DDHH:M

2000-08-20 05:00:00.550000000 -07:00

You can change the value of NLS_TIMESTAMP_TZ_FORMAT by:

= Changing its value in the initialization parameter file and then restarting the
instance

s Using the ALTER SESSION statement.

See Also:

» Oracle Database SQL Language Reference for more information
about the TO_TIMESTAMP_TZ function and the ALTER
SESSION statement

s "Choosing a Time Zone File" on page 4-16 for more information
about time zones

Calendar Definitions
This section includes the following topics:
= Calendar Formats

= NLS_CALENDAR

Calendar Formats

The following calendar information is stored for each territory:
» First Day of the Week

s First Calendar Week of the Year

= Number of Days and Months in a Year

s First Year of Era

3-20 Oracle Database Globalization Support Guide

Calendar Definitions

First Day of the Week

Some cultures consider Sunday to be the first day of the week. Others consider
Monday to be the first day of the week. A German calendar starts with Monday, as
shown in Table 3-6.

Table 3—-6 German Calendar Example: March 1998

Mo Di Mi Do Fr Sa So
- - - - - - 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 - - - - -

The first day of the week is determined by the NLS_ TERRITORY parameter.

See Also: "NLS_TERRITORY" on page 3-12

First Calendar Week of the Year

Some countries use week numbers for scheduling, planning, and bookkeeping. Oracle
Database supports this convention. In the ISO standard, the week number can be
different from the week number of the calendar year. For example, 1st Jan 1988 is in
ISO week number 53 of 1987. An ISO week always starts on a Monday and ends on a
Sunday.

s If January 1 falls on a Friday, Saturday, or Sunday, then the ISO week that
includes January 1 is the last week of the previous year, because most of the days
in the week belong to the previous year.

s If January 1 falls on a Monday, Tuesday, Wednesday, or Thursday, then the ISO
week is the first week of the new year, because most of the days in the week
belong to the new year.

To support the ISO standard, Oracle Database provides the IW date format element. It
returns the ISO week number.

Table 3-7 shows an example in which January 1 occurs in a week that has four or more
days in the first calendar week of the year. The week containing January 1 is the first
ISO week of 1998.

Table 3—7 First ISO Week of the Year: Example 1, January 1998

Mo Tu We Th Fr Sa Su ISO Week

- - - 1 2 3 4 First ISO week of 1998

5 6 7 8 9 10 11 Second ISO week of 1998
12 13 14 15 16 17 18 Third ISO week of 1998
19 20 21 22 23 24 25 Fourth ISO week of 1998
26 27 28 29 30 31 - Fifth ISO week of 1998

Table 3-8 shows an example in which January 1 occurs in a week that has three or
fewer days in the first calendar week of the year. The week containing January 1 is the
53rd ISO week of 1998, and the following week is the first ISO week of 1999.

Setting Up a Globalization Support Environment 3-21

Calendar Definitions

Table 3-8 First ISO Week of the Year: Example 2, January 1999
Mo Tu We Th Fr Sa Su ISO Week

- - - - 1 2 3 Fifty-third ISO week of 1998
4 5 6 7 8 9 10 First ISO week of 1999

1 12 13 14 15 16 17 Second ISO week of 1999

18 19 20 21 22 23 24 Third ISO week of 1999

25 26 27 28 29 30 31 Fourth ISO week of 1999

The first calendar week of the year is determined by the NLS_ TERRITORY parameter.

See Also: "NLS_TERRITORY" on page 3-12

Number of Days and Months in a Year
Oracle Database supports six calendar systems in addition to Gregorian, the default:

= Japanese Imperial—uses the same number of months and days as Gregorian, but
the year starts with the beginning of each Imperial Era

s ROC Official—uses the same number of months and days as Gregorian, but the
year starts with the founding of the Republic of China

» Persian—has 31 days for each of the first six months. The next five months have 30
days each. The last month has either 29 days or 30 days (leap year).

s Thai Buddha—uses a Buddhist calendar
= Arabic Hijrah—has 12 months with 354 or 355 days
= English Hijrah—has 12 months with 354 or 355 days

The calendar system is specified by the NLS_CALENDAR parameter.

See Also: "NLS_CALENDAR" on page 3-22

First Year of Era
The Islamic calendar starts from the year of the Hegira.

The Japanese Imperial calendar starts from the beginning of an Emperor's reign. For
example, 1998 is the tenth year of the Heisei era. It should be noted, however, that the
Gregorian system is also widely understood in Japan, so both 98 and Heisei 10 can be
used to represent 1998.

NLS_CALENDAR

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION,
and SQL functions

Default value Gregorian

Range of values Any valid calendar format name

3-22 Oracle Database Globalization Support Guide

Numeric and List Parameters

Many different calendar systems are in use throughout the world. NL.S_ CALENDAR
specifies which calendar system Oracle Database uses.

NLS_CALENDAR can have one of the following values:
= Arabic Hijrah
= English Hijrah
s Gregorian
= Japanese Imperial
s Persian
s ROC Official (Republic of China)
s Thai Buddha
See Also: Appendix A, "Locale Data" for a list of calendar

systems, their default date formats, and the character sets in which
dates are displayed

Example 3-17 NLS_CALENDAR='English Hijrah'
Set NLS_CALENDAR to English Hijrah.

SQL> ALTER SESSION SET NLS_CALENDAR='English Hijrah';

Enter a SELECT statement to display SYSDATE:

SELECT SYSDATE FROM DUAL;

You should see results similar to the following output:

SYSDATE

Numeric and List Parameters
This section includes the following topics:
s Numeric Formats
= NLS_NUMERIC_CHARACTERS
= NLS_LIST_SEPARATOR

Numeric Formats

The database must know the number-formatting convention used in each session to
interpret numeric strings correctly. For example, the database needs to know whether
numbers are entered with a period or a comma as the decimal character (234.00 or
234,00). Similarly, applications must be able to display numeric information in the
format expected at the client site.

Examples of numeric formats are shown in Table 3-9.

Table 3-9 Examples of Numeric Formats

Country Numeric Formats

Estonia 1234 567,89

Setting Up a Globalization Support Environment 3-23

Numeric and List Parameters

Table 3-9 (Cont.) Examples of Numeric Formats

Country Numeric Formats
Germany 1.234.567,89
Japan 1,234,567.89
UK 1,234,567.89
us 1,234,567.89

Numeric formats are derived from the setting of the NL.S_ TERRITORY parameter, but
they can be overridden by the NLS_ NUMERIC_CHARACTERS parameter.

See Also: "NLS_TERRITORY" on page 3-12

NLS_NUMERIC_CHARACTERS

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION,
and SQL functions

Default value Default decimal character and group separator for a particular
territory

Range of values Any two valid numeric characters

This parameter specifies the decimal character and group separator. The group
separator is the character that separates integer groups to show thousands and
millions, for example. The group separator is the character returned by the G number
format mask. The decimal character separates the integer and decimal parts of a
number. Setting NL.S_NUMERIC_CHARACTERS overrides the values derived from the
setting of NLS_ TERRITORY.

Any character can be the decimal character or group separator. The two characters
specified must be single-byte, and the characters must be different from each other.
The characters cannot be any numeric character or any of the following characters:
plus (+), hyphen (-), less than sign (<), greater than sign (>). Either character can be a
space.

Example 3-18 Setting NLS_NUMERIC_CHARACTERS

To set the decimal character to a comma and the grouping separator to a period, define
NLS_NUMERIC_CHARACTERS as follows:

ALTER SESSION SET NLS_NUMERIC_CHARACTERS = ",.";

SQL statements can include numbers represented as numeric or text literals. Numeric
literals are not enclosed in quotes. They are part of the SQL language syntax and
always use a dot as the decimal character and never contain a group separator. Text
literals are enclosed in single quotes. They are implicitly or explicitly converted to
numbers, if required, according to the current NLS settings.

The following SELECT statement formats the number 4000 with the decimal character
and group separator specified in the ALTER SESSION statement:

SELECT TO_CHAR (4000, '9G999D99') FROM DUAL;

3-24 Oracle Database Globalization Support Guide

Monetary Parameters

You should see results similar to the following output:

TO_CHAR (4

4.000,00

You can change the default value of NLLS_NUMERIC_CHARACTERS by:

= Changing the value of NLS_NUMERIC_CHARACTERS in the initialization
parameter file and then restarting the instance

= Using the ALTER SESSION statement to change the parameter's value during a
session

See Also: Oracle Database SQL Language Reference for more
information about the ALTER SESSION statement

NLS_LIST_SEPARATOR

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS_TERRITORY
Range of values Any valid character

NLS_LIST_SEPARATOR specifies the character to use to separate values in a list of
values (usually , or . or ; or :).Its default value is derived from the value of NLS_
TERRITORY. For example, a list of numbers from 1 to 5 can be expressed as 1,2,3,4,5 or
1.2.3.4.5or 1;2;3;4,5 or 1:2:3:4:5.

The character specified must be single-byte and cannot be the same as either the
numeric or monetary decimal character, any numeric character, or any of the
following characters: plus (+), hyphen (-), less than sign (<), greater than sign (>),
period (.).

Monetary Parameters
This section includes the following topics:
s Currency Formats
= NLS_CURRENCY
= NLS_ISO_CURRENCY
= NLS_DUAL_CURRENCY
= NLS_MONETARY_CHARACTERS
= NLS_CREDIT
= NLS_DEBIT

Currency Formats

Different currency formats are used throughout the world. Some typical ones are
shown in Table 3-10.

Setting Up a Globalization Support Environment 3-25

Monetary Parameters

Table 3-10 Currency Format Examples

Country Example
Estonia 1234,56 kr
Germany 1.234,56€
Japan ¥1,234.56
UK £1,234.56
Us $1,234.56

NLS_CURRENCY

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION,
and SQL functions

Default value Derived from NLS_ TERRITORY

Range of values Any valid currency symbol string

NLS_CURRENCY specifies the character string returned by the L number format mask,
the local currency symbol. Setting NLS_ CURRENCY overrides the setting defined
implicitly by NLS_TERRITORY.

Example 3-19 Displaying the Local Currency Symbol
Connect to the sample order entry schema:

SQL> connect oe/oe
Connected.

Enter a SELECT statement similar to the following example:

SQL> SELECT TO_CHAR (order_total, 'L099G999D99') "total" FROM orders
WHERE order_id > 2450;

You should see results similar to the following output:

$078,279.60
$006,653.40
$014,087.50
$010,474.60
$012,589.00
$000,129.00
$003,878.40
$021,586.20

You can change the default value of NLS_CURRENCY by:

» Changing its value in the initialization parameter file and then restarting the
instance

s Using an ALTER SESSION statement

3-26 Oracle Database Globalization Support Guide

Monetary Parameters

See Also: Oracle Database SQL Language Reference for more
information about the ALTER SESSION statement

NLS_ISO_CURRENCY

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, ALTER SESSION,
and SQL functions

Default value Derived from NLS_TERRITORY

Range of values Any valid string

NLS_ISO_CURRENCY specifies the character string returned by the C number format
mask, the ISO currency symbol. Setting NL.S_ISO_CURRENCY overrides the value
defined implicitly by NLS_TERRITORY.

Local currency symbols can be ambiguous. For example, a dollar sign ($) can refer to
US dollars or Australian dollars. ISO specifications define unique currency symbols for
specific territories or countries. For example, the ISO currency symbol for the US
dollar is USD. The ISO currency symbol for the Australian dollar is AUD.

More ISO currency symbols are shown in Table 3-11.

Table 3-11 ISO Currency Examples

Country Example
Estonia 1234 567,89 EEK
Germany 1.234.567,89 EUR
Japan 1,234,567.89 JPY
UK 1,234,567.89 GBP
uUsS 1,234,567.89 USD

NLS_ISO_CURRENCY has the same syntax as the NLS_TERRITORY parameter, and all
supported territories are valid values.

Example 3-20 Setting NLS_ISO_CURRENCY

This example assumes that you are connected as oe/oe in the sample schema.
To specify the ISO currency symbol for France, set NLS_ISO_CURRENCY as follows:

ALTER SESSION SET NLS_ISO_CURRENCY = FRANCE;

Enter a SELECT statement:

SQL> SELECT TO_CHAR (order_total, 'C099G999D99') "TOTAL" FROM orders
WHERE customer_id = 146;

You should see results similar to the following output:

EUR017,848.20
EUR027,455.30
EUR029,249.10

Setting Up a Globalization Support Environment 3-27

Monetary Parameters

EUR013,824.00
EUR000,086.00

You can change the default value of NLS_ISO_CURRENCY by:

s Changing its value in the initialization parameter file and then restarting the
instance

s Using an ALTER SESSION statement

See Also: Oracle Database SQL Language Reference for more
information about the ALTER SESSION statement

NLS_DUAL_CURRENCY

Property Description

Parameter type String

Parameter scope Initialization parameter, environmental variable, ALTER SESSION,
and SQL functions

Default value Derived from NLS_TERRITORY

Range of values Any valid symbol

Use NLS_DUAL_CURRENCY to override the default dual currency symbol defined
implicitly by NLS_TERRITORY.

NLS_DUAL_CURRENCY was introduced to support the euro currency symbol during
the euro transition period. See Table A-8, " Character Sets that Support the Euro
Symbol" for the character sets that support the euro symbol.

Oracle Database Support for the Euro

Twelve members of the European Monetary Union (EMU) have adopted the euro as
their currency. Setting NLS_TERRITORY to correspond to a country in the EMU
(Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the
Netherlands, Portugal, and Spain) results in the default values for NLS_CURRENCY
and NLS_DUAL_CURRENCY being set to EUR.

During the transition period (1999 through 2001), Oracle Database support for the euro
was provided in Oracle Database 8i and later as follows:

= NLS_CURRENCY was defined as the primary currency of the country
= NLS_ISO_CURRENCY was defined as the ISO currency code of a given territory

= NLS_DUAL_CURRENCY was defined as the secondary currency symbol (usually the
euro) for a given territory

Beginning with Oracle Database 9i Release 2, the value of NLS_ISO_CURRENCY results
in the ISO currency symbol being set to EUR for EMU member countries who use the
euro. For example, suppose NLS_ISO_CURRENCY is set to FRANCE. Enter the
following SELECT statement:

SELECT TO_CHAR (order_total, 'C099G999D99') "TOTAL" FROM orders
WHERE customer_id=116;

You should see results similar to the following output:

TOTAL

3-28 Oracle Database Globalization Support Guide

Monetary Parameters

EUR006,394.80
EUR011,097.40
EUR014,685.80
EUR000,129.00

Customers who must retain their obsolete local currency symbol can override the
default for NLS_DUAL_CURRENCY or NLS_CURRENCY by defining them as parameters
in the initialization file on the server and as environment variables on the client.

Note: NLS_LANG must also be set on the client for NL.S__
CURRENCY or NL.S_DUAL_CURRENCY to take effect.

It is not possible to override the ISO currency symbol that results from the value of
NLS_ISO_CURRENCY.

NLS_MONETARY_CHARACTERS

NLS_CREDIT

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS_TERRITORY
Range of values Any valid character

NLS_MONETARY_CHARACTERS specifies the character that separates groups of
numbers in monetary expressions. For example, when the territory is America, the
thousands separator is a comma, and the decimal separator is a period.

Property Description

Parameter type String

Parameter scope Environment variable

Default value Derived from NLS_TERRITORY

Range of values Any string, maximum of 9 bytes (not including null)

NLS_CREDIT sets the symbol that displays a credit in financial reports. The default
value of this parameter is determined by NL.S_ TERRITORY. For example, a space is a
valid value of NLS_ CREDIT.

This parameter can be specified only in the client environment.

It can be retrieved through the OCIGetNlsInfo () function.

Setting Up a Globalization Support Environment 3-29

Linguistic Sort Parameters

NLS_DEBIT
Property Description
Parameter type String
Parameter scope Environment variable
Default value Derived from NLS_TERRITORY
Range of values Any string, maximum or 9 bytes (not including null)

NLS_DEBIT sets the symbol that displays a debit in financial reports. The default
value of this parameter is determined by NLS_TERRITORY. For example, a minus sign
(-) is a valid value of NL.S_DEBIT.

This parameter can be specified only in the client environment.

It can be retrieved through the OCIGetNlsInfo () function.

Linguistic Sort Parameters
You can choose how to sort data by using linguistic sort parameters.
This section includes the following topics:
= NLS_SORT
= NLS_COMP

See Also: Chapter 5, "Linguistic Sorting and String Searching"

NLS_SORT
Property Description
Parameter type String
Parameter scope Initialization parameter, environment variable, ALTER SESSION,
and SQL functions
Default value Derived from NLS_LANGUAGE
Range of values BINARY or any valid linguistic sort name

NLS_SORT specifies the type of sort for character data. It overrides the default value
that is derived from NLS_LANGUAGE.

NLS_SORT contains either of the following values:

NLS_SORT = BINARY | sort_name

BINARY specifies a binary sort. sort_name specifies a linguistic sort sequence.

Example 3-21 Setting NLS_SORT
To specify the German linguistic sort sequence, set NLS_SORT as follows:

NLS_SORT = German

3-30 Oracle Database Globalization Support Guide

Linguistic Sort Parameters

NLS_COMP

Note: When the NLS_SORT parameter is set to BINARY, the
optimizer can, in some cases, satisfy the ORDER BY clause without
doing a sort by choosing an index scan.

When NLS_SORT is set to a linguistic sort, a sort is needed to satisfy
the ORDER BY clause if there is no linguistic index for the linguistic
sort specified by NLS_SORT.

If a linguistic index exists for the linguistic sort specified by NLS_
SORT, then the optimizer can, in some cases, satisfy the ORDER BY
clause without doing a sort by choosing an index scan.

You can alter the default value of NLS_SORT by:

s Changing its value in the initialization parameter file and then restarting the
instance

s Using an ALTER SESSION statement

See Also:
» Chapter 5, "Linguistic Sorting and String Searching”"

» Oracle Database SQL Language Reference for more information
about the ALTER SESSION statement

= 'Linguistic Sorts" on page A-19 for a list of linguistic sort names

Property Description

Parameter type String

Parameter scope Initialization parameter, environment variable, and ALTER
SESSION

Default value BINARY

Range of values BINARY , LINGUISTIC, or ANSI

The value of NLS_COMP affects the comparison behavior of SQL operations.

You can use NLS_COMP to avoid the cumbersome process of using the NLSSORT
function in SQL statements when you want to perform a linguistic comparison instead
of a binary comparison. When NLS_COMP is set to LINGUISTIC, SQL operations
perform a linguistic comparison based on the value of NLS_SORT. A setting of ANST is
for backward compatibility; in general, you should set NLS_COMP to LINGUISTIC
when you want to perform a linguistic comparison.

Set NLLS_COMP to LINGUISTIC as follows:

ALTER SESSION SET NLS_COMP = LINGUISTIC;

When NLS_COMP is set to LINGUISTIC, a linguistic index improves the performance
of the linguistic comparison. To enable a linguistic index, use the following syntax:

CREATE INDEX i ON t(NLSSORT(col, 'NLS_SORT=FRENCH'));

Setting Up a Globalization Support Environment 3-31

Character Set Conversion Parameter

See Also:
s "Using Linguistic Sorts" on page 5-2

s "Using Linguistic Indexes" on page 5-17

Character Set Conversion Parameter

This section includes the following topic:

= NLS_NCHAR_CONV_EXCP

NLS_NCHAR_CONV_EXCP

Property Description

Parameter type String

Parameter scope Initialization parameter and ALTER SESSION
Default value FALSE

Range of values TRUE or FALSE

NLS_NCHAR_CONV_EXCP determines whether an error is reported when there is data
loss during an implicit or explicit character type conversion between
NCHAR/NVARCHAR data and CHAR/VARCHAR2 data. The default value results in no
error being reported.

See Also: Chapter 11, "Character Set Migration" for more
information about data loss during character set conversion

Length Semantics

This section includes the following topic:

» NLS_LENGTH_SEMANTICS

NLS_LENGTH_SEMANTICS

Property Description

Parameter type String

Parameter scope Environment variable, initialization parameter, and ALTER
SESSION

Default value BYTE

Range of values BYTE or CHAR

By default, the character data types CHAR and VARCHAR?2 are specified in bytes, not
characters. Hence, the specification CHAR (20) in a table definition allows 20 bytes for
storing character data.

This works well if the database character set uses a single-byte character encoding
scheme because the number of characters is the same as the number of bytes. If the
database character set uses a multibyte character encoding scheme, then the number of
bytes no longer equals the number of characters because a character can consist of one

3-32 Oracle Database Globalization Support Guide

Length Semantics

or more bytes. Thus, column widths must be chosen with care to allow for the
maximum possible number of bytes for a given number of characters. You can
overcome this problem by switching to character semantics when defining the column
size.

NLS_LENGTH_SEMANTICS enables you to create CHAR, VARCHAR2, and LONG columns
using either byte or character length semantics. NCHAR, NVARCHAR2, CLOB, and NCLOB
columns are always character-based. Existing columns are not affected.

You may be required to use byte semantics in order to maintain compatibility with
existing applications.

NLS_LENGTH_SEMANTICS does not apply to tables in SYS and SYSTEM. The data
dictionary always uses byte semantics.

Note that if the NL.S_LENGTH_SEMANTICS environment variable is not set on the
client, then the client session defaults to the value for NL.S_ LENGTH_SEMANTICS on
the database server. This enables all client sessions on the network to have the same
NLS_LENGTH_SEMANTICS behavior. Setting the environment variable on an
individual client enables the server initialization parameter to be overridden for that
client.

See Also:
= "Length Semantics" on page 2-8

s Oracle Database Concepts for more information about length
semantics

Setting Up a Globalization Support Environment 3-33

Length Semantics

3-34 Oracle Database Globalization Support Guide

4

Datetime Data Types and Time Zone
Support

This chapter includes the following topics:

s Overview of Datetime and Interval Data Types and Time Zone Support
s Datetime and Interval Data Types

= Datetime and Interval Arithmetic and Comparisons

s Datetime SQL Functions

s Datetime and Time Zone Parameters and Environment Variables

s Choosing a Time Zone File

s Upgrading the Time Zone File and Timestamp with Time Zone Data

» Clients and Servers Operating with Different Versions of Time Zone Files
= Setting the Database Time Zone

m Setting the Session Time Zone

» Converting Time Zones With the AT TIME ZONE Clause

= Support for Daylight Saving Time

Overview of Datetime and Interval Data Types and Time Zone Support

Businesses conduct transactions across different time zones. Oracle Database datetime
and interval data types and time zone support make it possible to store consistent
information about the time of events and transactions.

Note: This chapter describes Oracle Database datetime and
interval data types. It does not attempt to describe ANSI data types
or other kinds of data types unless noted.

Datetime and Interval Data Types

The datetime data types are DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE,
and TIMESTAMP WITH LOCAL TIME ZONE. Values of datetime data types are
sometimes called datetimes.

The interval data types are INTERVAL YEAR TO MONTH and INTERVAL DAY TO
SECOND. Values of interval data types are sometimes called intervals.

Datetime Data Types and Time Zone Support 4-1

Datetime and Interval Data Types

Both datetimes and intervals are made up of fields. The values of these fields
determine the value of the data type. The fields that apply to all Oracle Database
datetime and interval data types are:

s YEAR

= MONTH
s DAY

= HOUR

= MINUTE
(] SECOND

TIMESTAMP WITH TIME ZONE also includes these fields:
n TIMEZONE_HOUR

n TIMEZONE_MINUTE

n TIMEZONE_REGION

n TIMEZONE_ABBR

TIMESTAMP WITH LOCAL TIME ZONE does not store time zone information
internally, but you can see local time zone information in SQL output if the TZH: TZM
or TZR TzD format elements are specified.

The following sections describe the datetime data types and interval data types in
more detail:

»s Datetime Data Types
= Interval Data Types

See Also:

» Oracle Database SQL Language Reference for the valid values of the
datetime and interval fields

» Oracle Database SQL Language Reference for information about
format elements

Datetime Data Types

This section includes the following topics:

= DATE Data Type

s TIMESTAMP Data Type

s TIMESTAMP WITH TIME ZONE Data Type

s TIMESTAMP WITH LOCAL TIME ZONE Data Type
= Inserting Values into Datetime Data Types

s Choosing a TIMESTAMP Data Type

DATE Data Type

The DATE data type stores date and time information. Although date and time
information can be represented in both character and number data types, the DATE
data type has special associated properties. For each DATE value, Oracle Database
stores the following information: century, year, month, date, hour, minute, and
second.

4-2 Oracle Database Globalization Support Guide

Datetime and Interval Data Types

You can specify a date value by:
= Specifying the date value as a literal

s Converting a character or numeric value to a date value with the TO_DATE
function

A date can be specified as an ANSI date literal or as an Oracle Database date value.

An ANSI date literal contains no time portion and must be specified in exactly the
following format:

DATE 'YYYY-MM-DD'

The following is an example of an ANSI date literal:
DATE '1998-12-25"

Alternatively, you can specify an Oracle Database date value as shown in the
following example:

TO_DATE('1998-DEC-25 17:30', 'YYYY-MON-DD HH24:MI', 'NLS_DATE_LANGUAGE=AMERICAN')

The default date format for an Oracle Database date value is derived from the NL.S__
DATE_FORMAT and NLS_DATE_LANGUAGE initialization parameters. The date format
in the example includes a two-digit number for the day of the month, an abbreviation
of the month name, the last two digits of the year, and a 24-hour time designation. The
specification for NLS_DATE_LANGUAGE is included because 'DEC' is not a valid value
for MON in all locales.

Oracle Database automatically converts character values that are in the default date
format into date values when they are used in date expressions.

If you specify a date value without a time component, then the default time is
midnight. If you specify a date value without a date, then the default date is the first
day of the current month.

Oracle Database DATE columns always contain fields for both date and time. If your
queries use a date format without a time portion, then you must ensure that the time
fields in the DATE column are set to midnight. You can use the TRUNC (date) SQL
function to ensure that the time fields are set to midnight, or you can make the query a
test of greater than or less than (<, <=, >=, or >) instead of equality or inequality (= or
! =) . Otherwise, Oracle Database may not return the query results you expect.

See Also:

» Oracle Database SQL Language Reference for more information
about the DATE data type

= "NLS_DATE_FORMAT" on page 3-16
= "NLS_DATE_LANGUAGE" on page 3-17

» Oracle Database SQL Language Reference for more information
about literals, format elements such as MM, and the TO_DATE
function

TIMESTAMP Data Type

The TIMESTAMP data type is an extension of the DATE data type. It stores year, month,
day, hour, minute, and second values. It also stores fractional seconds, which are not
stored by the DATE data type.

Specify the TIMESTAMP data type as follows:

Datetime Data Types and Time Zone Support 4-3

Datetime and Interval Data Types

TIMESTAMP [(fractional_seconds_precision)]

fractional_seconds_precisionis optional and specifies the number of digits in
the fractional part of the SECOND datetime field. It can be a number in the range 0 to 9.
The default is 6.

For example, '26-JUN-02 09:39:16.78"' shows 16.78 seconds. The fractional
seconds precision is 2 because there are 2 digits in '78".

You can specify the TIMESTAMP literal in a format like the following;:

TIMESTAMP 'YYYY-MM-DD HH24:MI:SS.FF'

Using the example format, specify TIMESTAMP as a literal as follows:

TIMESTAMP '1997-01-31 09:26:50.12"

The value of NLS_TIMESTAMP_FORMAT initialization parameter determines the

timestamp format when a character string is converted to the TIMESTAMP data type.

NLS_DATE_LANGUAGE determines the language used for character data such as MON.
See Also:

» Oracle Database SQL Language Reference for more information
about the TIMESTAMP data type

= "NLS_TIMESTAMP_FORMAT" on page 3-19
= "NLS_DATE_LANGUAGE" on page 3-17

TIMESTAMP WITH TIME ZONE Data Type

TIMESTAMP WITH TIME ZONE is a variant of TIMESTAMP that includes a time zone
region name or time zone offset in its value. The time zone offset is the difference (in
hours and minutes) between local time and UTC (Coordinated Universal Time,
formerly Greenwich Mean Time). Specify the TIMESTAMP WITH TIME ZONE data
type as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH TIME ZONE

fractional_ seconds_precisionis optional and specifies the number of digits in
the fractional part of the SECOND datetime field.

You can specify TIMESTAMP WITH TIME ZONE as a literal as follows:

TIMESTAMP '1997-01-31 09:26:56.66 +02:00'

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent

the same instant in UTC, regardless of the TIME ZONE offsets stored in the data. For
example, the following expressions have the same value:

TIMESTAMP '1999-01-15 8:00:00 -8:00"'

TIMESTAMP '1999-01-15 11:00:00 -5:00"

You can replace the UTC offset with the TZR (time zone region) format element. The
following expression specifies America/Los_Angeles for the time zone region:
TIMESTAMP '1999-01-15 8:00:00 America/Los_Angeles'

To eliminate the ambiguity of boundary cases when the time switches from Standard
Time to Daylight Saving Time, use both the TZR format element and the

corresponding TZD format element. The TZD format element is an abbreviation of the
time zone region with Daylight Saving Time information included. Examples are PST

4-4 Oracle Database Globalization Support Guide

Datetime and Interval Data Types

for U. S. Pacific Standard Time and PDT for U. S. Pacific Daylight Time. The following
specification ensures that a Daylight Saving Time value is returned:

TIMESTAMP '1999-10-29 01:30:00 America/Los_Angeles PDT'

If you do not add the TZD format element, and the datetime value is ambiguous, then
Oracle Database returns an error if you have the ERROR_ON_OVERLAP_TIME session
parameter set to TRUE. If ERROR_ON_OVERLAP_TIME is set to FALSE (the default
value), then Oracle Database interprets the ambiguous datetime as Standard Time.

The default date format for the TIMESTAMP WITH TIME ZONE data type is
determined by the value of the NL.S_ TIMESTAMP_TZ_FORMAT initialization
parameter.

See Also:

» Oracle Database SQL Language Reference for more information
about the TIMESTAMP WITH TIME ZONE data type

s "TIMESTAMP Data Type" on page 4-3 for more information
about fractional seconds precision

= "Support for Daylight Saving Time" on page 4-30
= "NLS_TIMESTAMP_TZ_FORMAT" on page 3-19

» Oracle Database SQL Language Reference for more information
about format elements

» Oracle Database SQL Language Reference for more information
about setting the ERROR_ON_OVERLAP_TIME session
parameter

TIMESTAMP WITH LOCAL TIME ZONE Data Type

TIMESTAMP WITH LOCAL TIME ZONE is another variant of TIMESTAMP. It differs
from TIMESTAMP WITH TIME ZONE as follows: data stored in the database is
normalized to the database time zone, and the time zone offset is not stored as part of
the column data. When users retrieve the data, Oracle Database returns it in the users'
local session time zone. The time zone offset is the difference (in hours and minutes)
between local time and UTC (Coordinated Universal Time, formerly Greenwich Mean
Time).

Specify the TIMESTAMP WITH LOCAL TIME ZONE data type as follows:

TIMESTAMP [(fractional_seconds_precision)] WITH LOCAL TIME ZONE

fractional_ seconds_precisionis optional and specifies the number of digits in
the fractional part of the SECOND datetime field.

There is no literal for TIMESTAMP WITH LOCAL TIME ZONE, but TIMESTAMP literals
and TIMESTAMP WITH TIME ZONE literals can be inserted into a TIMESTAMP WITH
LOCAL TIME ZONE column.

The default date format for TIMESTAMP WITH LOCAL TIME ZONE is determined by
the value of the NLS_TIMESTAMP_FORMAT initialization parameter.

Datetime Data Types and Time Zone Support 4-5

Datetime and Interval Data Types

See Also:

» Oracle Database SQL Language Reference for more information
about the TIMESTAMP WITH LOCAL TIME ZONE data type

s "TIMESTAMP Data Type" on page 4-3 for more information
about fractional seconds precision

s "NLS_TIMESTAMP_FORMAT" on page 3-19

Inserting Values into Datetime Data Types
You can insert values into a datetime column in the following ways:

= Insert a character string whose format is based on the appropriate NLS format
value

s Insert a literal
= Insert a literal for which implicit conversion is performed
s Use the TO_TIMESTAMP, TO_TIMESTAMP_TZ, or TO_DATE SQL function

The following examples show how to insert data into datetime data types.

Example 4-1 Inserting Data into a DATE Column
Set the date format.

SQL> ALTER SESSION SET NLS_DATE_FORMAT='DD-MON-YYYY HH24:MI:SS';
Create a table table_dt with columns c_id and c_dt. The c_id column is of

NUMBER data type and helps to identify the method by which the data is entered. The
c_dt column is of DATE data type.

SQL> CREATE TABLE table_dt (c_id NUMBER, c_dt DATE) ;

Insert a date as a character string.

SQL> INSERT INTO table_dt VALUES(1, '01-JAN-2003');

Insert the same date as a DATE literal.

SQL> INSERT INTO table_dt VALUES(2, DATE '2003-01-01');

Insert the date as a TIMESTAMP literal. Oracle Database drops the time zone
information.

SQL> INSERT INTO table_dt VALUES(3, TIMESTAMP '2003-01-01 00:00:00 America/Los_
Angeles');

Insert the date with the TO_DATE function.

SQL> INSERT INTO table_dt VALUES(4, TO_DATE('01-JAN-2003', 'DD-MON-YYYY'));

Display the data.

SQL> SELECT * FROM table_dt;

1 01-JAN-2003 00:00:00
2 01-JAN-2003 00:00:00
3 01-JAN-2003 00:00:00
4 01-JAN-2003 00:00:00

4-6 Oracle Database Globalization Support Guide

Datetime and Interval Data Types

Example 4-2 Inserting Data into a TIMESTAMP Column

Set the timestamp format.
SQL> ALTER SESSION SET NLS_TIMESTAMP_FORMAT='DD-MON-YY HH:MI:SSXFF';
Create a table table_ts with columns c_id and c_ts. The c_id column is of

NUMBER data type and helps to identify the method by which the data is entered. The
c_ts column is of TIMESTAMP data type.

SQL> CREATE TABLE table_ts(c_id NUMBER, c_ts TIMESTAMP) ;

Insert a date and time as a character string.

SQL> INSERT INTO table_ts VALUES(1l, '01-JAN-2003 2:00:00');

Insert the same date and time as a TIMESTAMP literal.
SQL> INSERT INTO table_ts VALUES(2, TIMESTAMP '2003-01-01 2:00:00');
Insert the same date and time as a TIMESTAMP WITH TIME ZONE literal. Oracle

Database converts it to a TIMESTAMP value, which means that the time zone
information is dropped.

SQL> INSERT INTO table_ts VALUES (3, TIMESTAMP '2003-01-01 2:00:00 -08:00");

Display the data.

SQL> SELECT * FROM table_ts;

C_ID C_Ts

1 01-JAN-03 02:00:00.000000 AM
2 01-JAN-03 02:00:00.000000 AM
3 01-JAN-03 02:00:00.000000 AM

Note that the three methods result in the same value being stored.

Example 4-3 Inserting Data into the TIMESTAMP WITH TIME ZONE Data Type

Set the timestamp format.

SQL> ALTER SESSION SET NLS_TIMESTAMP_TZ_FORMAT='DD-MON-RR HH:MI:SSXFF AM TZR';

Set the time zone to '-07:00".
SQL> ALTER SESSION SET TIME_ZONE='-7:00';
Create a table table_tstz with columns c_idand c_tstz. The c_id column is of

NUMBER data type and helps to identify the method by which the data is entered. The
c_tstz column is of TIMESTAMP WITH TIME ZONE data type.

SQL> CREATE TABLE table_tstz (c_id NUMBER, c_tstz TIMESTAMP WITH TIME ZONE) ;

Insert a date and time as a character string.
SQL> INSERT INTO table_tstz VALUES(1, '01-JAN-2003 2:00:00 AM -07:00');
Insert the same date and time as a TIMESTAMP literal. Oracle Database converts it to a

TIMESTAMP WITH TIME ZONE literal, which means that the session time zone is
appended to the TIMESTAMP value.

SQL> INSERT INTO table_tstz VALUES(2, TIMESTAMP '2003-01-01 2:00:00');

Datetime Data Types and Time Zone Support 4-7

Datetime and Interval Data Types

Insert the same date and time as a TIMESTAMP WITH TIME ZONE literal.

SQL> INSERT INTO table_tstz VALUES(3, TIMESTAMP '2003-01-01 2:00:00 -8:00');

Display the data.

SQL> SELECT * FROM table_tstz;

01-JAN-03 02:00.00:000000 AM -07:00
2 01-JAN-03 02:00:00.000000 AM -07:00
3 01-JAN-03 02:00:00.000000 AM -08:00

Note that the time zone is different for method 3, because the time zone information
was specified as part of the TIMESTAMP WITH TIME ZONE literal.

Example 4-4 Inserting Data into the TIMESTAMP WITH LOCAL TIME ZONE Data Type

Consider data that is being entered in Denver, Colorado, U.S.A., whose time zone is
UTC-7.

SQL> ALTER SESSION SET TIME_ZONE='-07:00';
Create a table table_tsltz with columns ¢_id and c_tsltz. The c_id column is

of NUMBER data type and helps to identify the method by which the data is entered.
The c_tsltz columnis of TIMESTAMP WITH LOCAL TIME ZONE data type.

SQL> CREATE TABLE table_tsltz (c_id NUMBER, c_tsltz TIMESTAMP WITH LOCAL TIME ZONE) ;

Insert a date and time as a character string.

SQL> INSERT INTO table_tsltz VALUES(1l, '01-JAN-2003 2:00:00');

Insert the same data as a TIMESTAMP WITH LOCAL TIME ZONE literal.

SQL> INSERT INTO table_tsltz VALUES (2, TIMESTAMP '2003-01-01 2:00:00');

Insert the same data as a TIMESTAMP WITH TIME ZONE literal. Oracle Database
converts the data to a TIMESTAMP WITH LOCAL TIME ZONE value. This means the
time zone that is entered (-08: 00) is converted to the session time zone value
(-07:00).

SQL> INSERT INTO table_tsltz VALUES(3, TIMESTAMP '2003-01-01 2:00:00 -08:00"');

Display the data.

SQL> SELECT * FROM table_tsltz;

C_ID C_TSLTZ

01-JAN-03 02.00.00.000000 AM
2 01-JAN-03 02.00.00.000000 AM
3 01-JAN-03 03.00.00.000000 AM

Note that the information that was entered as UTC-8 has been changed to the local
time zone, changing the hour from 2 to 3.

See Also: "Datetime SQL Functions" on page 4-12 for more

information about the TO_TIMESTAMP or TO_TIMESTAMP_TZ SQL
functions

4-8 Oracle Database Globalization Support Guide

Datetime and Interval Data Types

Choosing a TIMESTAMP Data Type

Use the TIMESTAMP data type when you need a datetime value to record the time of
an event. For example, you can store information about the times when workers punch
a timecard in and out of their assembly line workstations. The application can be used
across time zones. Consider a banking company with offices around the world. It can
record a deposit to an account at 11 a.m. in London and a withdrawal of the same
amount from the account at 9 a.m. in New York, by normalizing the time zones. The
TIMESTAMP data type uses 7 or 11 bytes of storage.

Use the TIMESTAMP WITH TIME ZONE data type when the datetime value represents
a future local time or the time zone information needs to be recorded with the value.
Consider a scheduled appointment in a local time. The future local time may need to
be adjusted if the time zone definition, such as daylight saving rule, changes.
Otherwise, the value can become incorrect. This data type is most immune to such
impact.

The TIMESTAMP WITH TIME ZONE data type requires 13 bytes of storage, or two
more bytes of storage than the TIMESTAMP and TIMESTAMP WITH LOCAL TIME
ZONE data types because it stores time zone information. The time zone is stored as a
time zone region name or as an offset from UTC. The data is available for display or
calculations without additional processing. A TIMESTAMP WITH TIME ZONE column
cannot be used as a primary key. If an index is created on a TIMESTAMP WITH TIME
ZONE column, it becomes a function-based index.

The TIMESTAMP WITH LOCAL TIME ZONE data type stores the timestamp without
time zone information. It normalizes the data to the database time zone every time the
data is sent to and from a client. It requires 11 bytes of storage.

The TIMESTAMP WITH LOCAL TIME ZONE data type is appropriate when the
original time zone is of no interest, but the relative times of events are important and
daylight saving adjustment does not have to be accurate. The time zone conversion
that this data type performs to and from the database time zone is asymmetrical, due
to the daylight saving adjustment. Because this data type does not preserve the time
zone information, it does not distinguish values near the adjustment in fall, whether
they are daylight saving time or standard time. This confusion between distinct
instants can cause an application to behave unexpectedly, especially if the adjustment
takes place during the normal working hours of a user.

Note that some regions, such as Brazil and Israel, that update their Daylight Saving
Transition dates frequently and at irregular periods, are particularly susceptible to
time zone adjustment issues. If time information from these regions is key to your
application, you may want to consider using one of the other datetime types.

Interval Data Types

Interval data types store time durations. They are used primarily with analytic
functions. For example, you can use them to calculate a moving average of stock
prices. You must use interval data types to determine the values that correspond to a
particular percentile. You can also use interval data types to update historical tables.

This section includes the following topics:
= INTERVAL YEAR TO MONTH Data Type
= INTERVAL DAY TO SECOND Data Type

s Inserting Values into Interval Data Types

Datetime Data Types and Time Zone Support 4-9

Datetime and Interval Data Types

See Also: Oracle Database Data Warehousing Guide for more
information about analytic functions, including moving averages
and inverse percentiles

INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH
datetime fields. Specify INTERVAL YEAR TO MONTH as follows:

INTERVAL YEAR [(year_precision)] TO MONTH
year_precisionis the number of digits in the YEAR datetime field. Accepted values
are 0 to 9. The default value of year precisionis?2.

Interval values can be specified as literals. There are many ways to specify interval
literals. The following is one example of specifying an interval of 123 years and 2
months. The year precision is 3.

INTERVAL '123-2' YEAR(3) TO MONTH
See Also: Oracle Database SQL Language Reference for more

information about specifying interval literals with the INTERVAL
YEAR TO MONTH data type

INTERVAL DAY TO SECOND Data Type

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes,
and seconds. Specify this data type as follows:

INTERVAL DAY [(day_precision)] TO SECOND [(fractional_seconds_precision)]

day_precisionis the number of digits in the DAY datetime field. Accepted values
are 0 to 9. The default is 2.

fractional_seconds_precisionis the number of digits in the fractional part of
the SECOND datetime field. Accepted values are 0 to 9. The default is 6.

The following is one example of specifying an interval of 4 days, 5 hours, 12 minutes,
10 seconds, and 222 thousandths of a second. The fractional second precision is 3.

INTERVAL '4 5:12:10.222' DAY TO SECOND(3)

Interval values can be specified as literals. There are many ways to specify interval
literals.

See Also: Oracle Database SQL Language Reference for more
information about specifying interval literals with the INTERVAL
DAY TO SECOND data type

Inserting Values into Interval Data Types
You can insert values into an interval column in the following ways:

= Insert an interval as a literal. For example:

INSERT INTO tablel VALUES (INTERVAL '4-2' YEAR TO MONTH) ;

This statement inserts an interval of 4 years and 2 months.

Oracle Database recognizes literals for other ANSI interval types and converts the
values to Oracle Database interval values.

4-10 Oracle Database Globalization Support Guide

Datetime and Interval Arithmetic and Comparisons

n Use the NUMTODSINTERVAL, NUMTOYMINTERVAL, TO_DSINTERVAL, and TO_
YMINTERVAL SQL functions.

See Also: "Datetime SQL Functions" on page 4-12

Datetime and Interval Arithmetic and Comparisons
This section includes the following topics:
= Datetime and Interval Arithmetic
s Datetime Comparisons

= Explicit Conversion of Datetime Data Types

Datetime and Interval Arithmetic

You can perform arithmetic operations on date (DATE), timestamp (TIMESTAMP,
TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE)and
interval (INTERVAL DAY TO SECOND and INTERVAL YEAR TO MONTH) data. You
can maintain the most precision in arithmetic operations by using a timestamp data
type with an interval data type.

You can use NUMBER constants in arithmetic operations on date and timestamp values.
Oracle Database internally converts timestamp values to date values before doing
arithmetic operations on them with NUMBER constants. This means that information
about fractional seconds is lost during operations that include both date and
timestamp values. Oracle Database interprets NUMBER constants in datetime and
interval expressions as number of days.

Each DATE value contains a time component. The result of many date operations
includes a fraction. This fraction means a portion of one day. For example, 1.5 days is
36 hours. These fractions are also returned by Oracle Database built-in SQL functions
for common operations on DATE data. For example, the built-in MONTHS_BETWEEN
SQL function returns the number of months between two dates. The fractional portion
of the result represents that portion of a 31-day month.

Oracle Database performs all timestamp arithmetic in UTC time. For TIMESTAMP
WITH LOCAL TIME ZONE data, Oracle Database converts the datetime value from the
database time zone to UTC and converts back to the database time zone after
performing the arithmetic. For TIMESTAMP WITH TIME ZONE data, the datetime
value is always in UTC, so no conversion is necessary.

See Also:

» Oracle Database SQL Language Reference for detailed information
about datetime and interval arithmetic operations

= "Datetime SQL Functions" on page 4-12 for information about
which functions cause implicit conversion to DATE

Datetime Comparisons

When you compare date and timestamp values, Oracle Database converts the data to
the more precise data type before doing the comparison. For example, if you compare
data of TIMESTAMP WITH TIME ZONE data type with data of TIMESTAMP data type,
Oracle Database converts the TIMESTAMP data to TIMESTAMP WITH TIME ZONE,
using the session time zone.

The order of precedence for converting date and timestamp data is as follows:

Datetime Data Types and Time Zone Support 4-11

Datetime SQL Functions

1. DATE

2. TIMESTAMP

3. TIMESTAMP WITH LOCAL TIME ZONE
4. TIMESTAMP WITH TIME ZONE

For any pair of data types, Oracle Database converts the data type that has a smaller
number in the preceding list to the data type with the larger number.

Explicit Conversion of Datetime Data Types

If you want to do explicit conversion of datetime data types, use the CAST SQL
function. You can explicitly convert DATE, TIMESTAMP, TIMESTAMP WITH TIME
ZONE, and TIMESTAMP WITH LOCAL TIME ZONE to another data type in the list.

See Also: Oracle Database SQL Language Reference

Datetime SQL Functions

Datetime functions operate on date (DATE), timestamp (TIMESTAMP, TIMESTAMP
WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE) and interval
(INTERVAL DAY TO SECOND, INTERVAL YEAR TO MONTH) values.

Some of the datetime functions were designed for the Oracle Database DATE data type.
If you provide a timestamp value as their argument, then Oracle Database internally
converts the input type to a DATE value. Oracle Database does not perform internal
conversion for the ROUND and TRUNC functions.

Table 4-1 shows the datetime functions that were designed for the Oracle Database
DATE data type. For more detailed descriptions, refer to Oracle Database SQL Language
Reference.

Table 4-1 Datetime Functions Designed for the DATE Data Type

Function Description

ADD_MONTHS Returns the date d plus n months

LAST DAY Returns the last day of the month that contains date
MONTHS_BETWEEN Returns the number of months between datel and date2
NEW_TIME Returns the date and time in zone2 time zone when the date and

time in zonel time zone are date

Note: This function takes as input only a limited number of time
zones. You can have access to a much greater number of time
zones by combining the FROM_Tz function and the datetime

expression.

NEXT_DAY Returns the date of the first weekday named by char that is later
than date

ROUND (date) Returns date rounded to the unit specified by the fmt format
model

TRUNC (date) Returns date with the time portion of the day truncated to the

unit specified by the fmt format model

Table 4-2 describes additional datetime functions. For more detailed descriptions,
refer to Oracle Database SQL Language Reference.

4-12 Oracle Database Globalization Support Guide

Datetime SQL Functions

Table 4-2 Additional Datetime Functions

Datetime Function

Description

CURRENT_DATE

Returns the current date in the session time zone in a value in the
Gregorian calendar, of the DATE data type

CURRENT_TIMESTAMP

Returns the current date and time in the session time zone as a
TIMESTAMP WITH TIME ZONE value

DBTIMEZONE

Returns the value of the database time zone. The value is a time
zone offset or a time zone region name

EXTRACT (datetime)

Extracts and returns the value of a specified datetime field from a
datetime or interval value expression

FROM_TZ Converts a TIMESTAMP value at a time zone to a TIMESTAMP
WITH TIME ZONE value

LOCALTIMESTAMP Returns the current date and time in the session time zone in a
value of the TIMESTAMP data type

NUMTODSINTERVAL Converts number n to an INTERVAL DAY TO SECOND literal

NUMTOYMINTERVAL Converts number n to an INTERVAL YEAR TO MONTH literal

SESSIONTIMEZONE Returns the value of the current session's time zone

SYS_EXTRACT_UTC

Extracts the UTC from a datetime with time zone offset

SYSDATE Returns the date and time of the operating system on which the
database resides, taking into account the time zone of the
database server's operating system that was in effect when the
database was started

SYSTIMESTAMP Returns the system date, including fractional seconds and time

zone of the system on which the database resides

TO_CHAR (datetime)

Converts a datetime or interval value of DATE, TIMESTAMP,
TIMESTAMP WITH TIME ZONE, or TIMESTAMP WITH LOCAL
TIME ZONE data type to a value of VARCHAR?2 data type in the
format specified by the fmt date format

TO_DSINTERVAL

Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to a value of INTERVAL DAY TO SECOND
data type

TO_NCHAR (datetime)

Converts a datetime or interval value of DATE, TIMESTAMP,
TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL
TIME ZONE, INTERVAL MONTH TO YEAR, or INTERVAL DAY
TO SECOND data type from the database character set to the
national character set

TO_TIMESTAMP

Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to a value of TIMESTAMP data type

TO_TIMESTAMP_TZ

Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to a value of the TIMESTAMP WITH TIME
ZONE data type

TO_YMINTERVAL

Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 data type to a value of the INTERVAL YEAR TO
MONTH data type

TZ_OFFSET

Returns the time zone offset that corresponds to the entered value,
based on the date that the statement is executed

Table 4-3 describes functions that are used in the Daylight Saving Time (DST) upgrade
process, and are only available when preparing or updating windows. For more
detailed information, see Oracle Database SQL Language Reference.

Datetime Data Types and Time Zone Support 4-13

Datetime and Time Zone Parameters and Environment Variables

Table 4-3 Time Zone Conversion Functions

Time Zone Function Description

ORA_DST_AFFECTED Enables you to verify whether the data in a column is affected by
upgrading the DST rules from one version to another version

ORA_DST_CONVERT Enables you to upgrade your TSTZ column data from one
version to another

ORA_DST_ERROR Enables you to verify that there are no errors when upgrading a
datetime value

See Also: Oracle Database SQL Language Reference

Datetime and Time Zone Parameters and Environment Variables
This section includes the following topics:
s Datetime Format Parameters
» Time Zone Environment Variables
= Daylight Saving Time Session Parameter

s Daylight Saving Time Upgrade Parameter

Datetime Format Parameters

Table 44 contains the names and descriptions of the datetime format parameters.

Table 4-4 Datetime Format Parameters

Parameter Description

NLS_DATE_FORMAT Defines the default date format to use with the TO_CHAR and
TO_DATE functions

NLS_TIMESTAMP_FORMAT Defines the default timestamp format to use with the TO_
CHAR and TO_TIMESTAMP functions

NLS_TIMESTAMP_TZ_FORMAT Defines the default timestamp with time zone format to use
with the TO_CHAR and TO_TIMESTAMP_TZ functions

Their default values are derived from NLLS_ TERRITORY.

You can specify their values by setting them in the initialization parameter file. If you
change the values in the initialization parameter file, you need to restart the instance
for the change to take effect. You can also specify their values for a client as client
environment variables. For Java clients, the value of NLS_ TERRITORY is derived from
the default locale of JRE. The values specified in the initialization parameter file are
not used for JDBC sessions.

To change their values during a session, use the ALTER SESSION statement.

See Also:

s "Date and Time Parameters" on page 3-15 for more information,
including examples

s "NLS_DATE_FORMAT" on page 3-16
s "NLS_TIMESTAMP_FORMAT" on page 3-19
= "NLS_TIMESTAMP_TZ_FORMAT" on page 3-19

4-14 Oracle Database Globalization Support Guide

Datetime and Time Zone Parameters and Environment Variables

Time Zone Environment Variables

The time zone environment variables are:

= ORA_TZFILE, which enables you to specify a time zone on the client and Oracle
Database server. Note that when you specify ORA_TZFILE on Oracle Database
server, the only time when this environment variable takes effect is during the
creation of the database.

= ORA_SDTZ, which specifies the default session time zone.

See Also:
s "Choosing a Time Zone File" on page 4-16
» "Setting the Session Time Zone" on page 4-28

Daylight Saving Time Session Parameter

ERROR_ON_OVERLAP_TIME is a session parameter that determines how Oracle
Database handles an ambiguous datetime boundary value. Ambiguous datetime
values can occur when the time changes between Daylight Saving Time and standard
time.

The possible values are TRUE and FALSE. When ERROR_ON_OVERLAP_TIME is TRUE,
then an error is returned when Oracle Database encounters an ambiguous datetime
value. When ERROR_ON_OVERLAP_TIME is FALSE, then ambiguous datetime values
are assumed to be the standard time representation for the region. The default value is
FALSE.

See Also:
= "Support for Daylight Saving Time" on page 4-30
» Oracle Database SQL Language Reference

Daylight Saving Time Upgrade Parameter

DST_UPGRADE_INSERT_CONV is an initialization parameter that is only used during
the upgrade window of the Daylight Saving Time (DST) upgrade process. It is only
applicable to tables with TIMESTAMP WITH TIME ZONE columns because those are the
only ones that are modified during the DST upgrade.

During the upgrade window of the DST patching process (which is described in the
DBMS_DST package), tables with TIMESTAMP WITH TIMEZONE data undergo
conversion to the new time zone version. Columns in tables that have not yet been
converted will still have the TIMESTAMP WITH TIMEZONE reflecting the previous time
zone version. In order to present the data in these columns as though they had been
converted to the new time zone version when you issue SELECT statements, Oracle
adds by default conversion operators over the columns to convert them to the new
version. Adding the conversion operator may, however, slow down queries and
disable usage of indexes on the TIMESTAMP WITH TIMEZONE columns. Hence, Oracle
provides a parameter, DST_UPGRADE_INSERT_CONV, that specifies whether or not
internal operators are allocated on top of TIMESTAMP WITH TIMEZONE columns of
tables that have not been upgraded. By default, its value is TRUE. If users know that
the conversion process will not affect the TIMESTAMP WITH TIMEZONE columns, then
this parameter can be set to FALSE.

Oracle strongly recommends that you set this parameter to TRUE throughout the DST
patching process. By default, this parameter is set to TRUE. However, if set to TRUE,

Datetime Data Types and Time Zone Support 4-15

Choosing a Time Zone File

query performance may be degraded on unconverted tables. Note that this only
applies during the upgrade window.

See Also:
» Oracle Database Reference

» Oracle Database PL/SQL Packages and Types Reference

Choosing a Time Zone File

The Oracle Database time zone files contain the valid time zone names. The following
information is also included for each time zone:

s Offset from Coordinated Universal Time (UTC)
s Transition times for Daylight Saving Time
= Abbreviations for standard time and Daylight Saving Time

Oracle Database supplies multiple versions of time zone files, and there are two types
of file associated with each one: a large file, which contains all the time zones defined
in the database, and a small file, which contains only the most commonly used time
zones. The large versions are designated as timezlrg_<version_number>.dat,
while the small versions are designated as timezone_<version_number>.dat.
The files are located in the oracore/zoneinfo subdirectory under the Oracle
Database home directory, so, for example, the default time zone file is the highest
version time zone file in this subdirectory. For example, in Oracle Database 11g,
release 2, the default file is SORACLE_HOME/oracore/zoneinfo/timezlrg_

14 .dat, which contains all the time zones defined in the database.

Examples of time zone files are:

SORACLE_HOME/oracore/zoneinfo/timezlrg_4.dat -- large version 4
SORACLE_HOME/oracore/zoneinfo/timezone_4.dat -- small version 4
SORACLE_HOME/oracore/zoneinfo/timezlrg_5.dat -- large version 5
SORACLE_HOME/oracore/zoneinfo/timezone_5.dat -- small version 5

During the database creation process, you choose the time zone version for the server.
This version is fixed, but you can, however, go through the upgrade process to achieve
a higher version. You can use different versions of time zone files on the client and
server, but Oracle recommends that you do not. This is because there is a performance
penalty when a client on one version communicates with a server on a different
version. The performance penalty arises because the TIMESTAMP WITH TIME ZONE
(TSTZ) data is transferred using a local timestamp instead of UTC.

On the server, Oracle Database always uses a large file. On the client, you can use
either a large or a small file. If you use a large time zone file on the client, then you
should continue to use it unless you are sure that no information will be missing if you
switch to a smaller one. If you use a small file, you have to make sure that the client
does not query data that is not present in the small time zone file. Otherwise, you get
an error.

You can enable the use of a specific time zone file in the client or on the server. If you
want to enable a time zone file on the server, there are two situations. One is that you
go through a time zone upgrade to the target version. See "Upgrading the Time Zone
File and Timestamp with Time Zone Data" on page 4-18 for more information.
Another is when you are creating a new database, in that case, you can set the ORA_
TZFILE environment variable to point to the time zone file of your choice.

4-16 Oracle Database Globalization Support Guide

Choosing a Time Zone File

To enable a specific time zone file on the client, you can set ORA_TZFILE to whatever
time zone file you want. If ORA_TZFILE is not set, Oracle Database automatically
picks up and use the file with the latest time zone version. See Oracle Call Interface
Programmer’s Guide for more information on how to upgrade Daylight Saving Time on
the client.

Oracle Database time zone data is derived from the public domain information
available at ftp://elsie.nci.nih.gov/pub/. Oracle Database time zone data
may not reflect the most recent data available at this site.

You can obtain a list of time zone names and time zone abbreviations from the time
zone file that is installed with your database by entering the following statement:

SELECT TZNAME, TZABBREV
FROM V$TIMEZONE_NAMES
ORDER BY TZNAME, TZABBREV;

For the default time zone file, this statement results in output similar to the following:

TZNAME TZABBREV
Africa/Abidjan GMT
Africa/Abidjan LMT
Africa/Algiers CEST
Africa/Algiers CET
Africa/Algiers LMT
Africa/Algiers PMT
Africa/Algiers WET
Africa/Algiers WEST
WET LMT
WET WEST
WET WET

2137 rows selected.

In the above output, 2 time zone abbreviations are associated with the Africa/Abidjan
time zone, and 6 abbreviations are associated with the Africa/Algiers time zone. The
following table shows some of the time zone abbreviations and their meanings.

Time Zone Abbreviation Meaning

LMT Local Mean Time

PMT Paris Mean Time

WET Western European Time

WEST Western European Summer
Time

CET Central Europe Time

CEST Central Europe Summer Time

EET Eastern Europe Time

EEST Eastern Europe Summer Time

Note that an abbreviation can be associated with multiple time zones. For example,
CET is associated with both Africa/Algiers and Africa/Casablanca, as well as time
zones in Europe.

Datetime Data Types and Time Zone Support 4-17

Upgrading the Time Zone File and Timestamp with Time Zone Data

If you want a list of time zones without repeating the time zone name for each
abbreviation, use the following query:

SELECT UNIQUE TZNAME
FROM VS$TIMEZONE_NAMES;

For example, version 11 contains output similar to the following:

Africa/Addis_Ababa
Africa/Bissau
Africa/Ceuta

Turkey
US/East-Indiana
US/Samoa

The default time zone file contains more than 350 unique time zone names. The small
time zone file contains more than 180 unique time zone names.

See Also:

s "Customizing Time Zone Data" on page 13-15

s "Time Zone Region Names" on page A-23 for a list of valid
Oracle Database time zone names

m SORACLE_HOME/oracore/zoneinfo/timezdif.csv,
provided with your Oracle Database software installation, for a
full list of time zones changed since Oracle9i

» Oracle Database Upgrade Guide for upgrade information

Upgrading the Time Zone File and Timestamp with Time Zone Data

The time zone files that are supplied with the Oracle Database are updated
periodically to reflect changes in transition rules for various time zone regions. To find
which Time Zone File your database currently uses, query VSTIMEZONE_FILE.

Note: Oracle Database 97 includes version 1 of the time zone files,
and Oracle Database 10g includes version 2. For Oracle Database 11g,
release 2, all time zone files from versions 1 to 14 are included.
Various patches and patch sets, which are released separately for
these releases, may update the time zone file version as well.

Daylight Saving Time (DST) Transition Rules Changes

Governments can and do change the rules for when Daylight Saving Time takes effect
or how it is handled. When this occurs, Oracle provides a new set of transition rules
for handling timestamp with time zone data.

Transition periods for the beginning or ending of Daylight Saving Time can
potentially introduce problems (such as data loss) when handling timestamps with
time zone data. Because of this, there are certain rules for dealing with the transition,
and, in this release, these transition rules have changed. In addition, Oracle has
significantly improved the way of dealing with this transition by providing a new
package called DBMS_DST.

4-18 Oracle Database Globalization Support Guide

Upgrading the Time Zone File and Timestamp with Time Zone Data

The changes to DST transition rules may affect existing data of TIMESTAMP WITH
TIME ZONE data type, because of the way Oracle Database stores this data internally.
When users enter timestamps with time zone, Oracle Database converts the data to
UTC, based on the transition rules in the time zone file, and stores the data together
with the ID of the original time zone on disk. When data is retrieved, the reverse
conversion from UTC takes place. For example, when the version 2 transition rules
were in effect, the value TIMESTAMP '2007-11-02 12:00:00 America/Los_
Angeles', would have been stored as UTC value '2007-11-02 20:00:00" plus
the time zone ID for 'America/Los_Angeles'. The time in Los Angeles would
have been UTC minus eight hours (PST). Under version 3 of the transition rules, the
offset for the same day is minus seven hours (PDT). Beginning with year 2007, the DST
has been in effect longer (until the first Sunday of November, which is November 4th
in 2007). Now, when users retrieve the same timestamp and the new offset is added to
the stored UTC time, they receive TIMESTAMP '2007-11-02 13:00:00
America/Los_Angeles'. There is a one hour difference compared to the data
previous to version 3 taking effect.

See Oracle Database PL/SQL Packages and Types Reference for more information
regarding the DBMS_DST package.

Note: For any time zone region whose transition rules have been
updated, the upgrade process discussed throughout this section,
"Upgrading the Time Zone File and Timestamp with Time Zone Data"
on page 4-18, affects only timestamps that point to the future relative
to the effective date of the corresponding DST rule change. For
example, no timestamp before year 2007 is affected by the version 3
change to the 'America/Los_Angeles' time zone region.

Preparing to Upgrade the Time Zone File and Timestamp with Time Zone Data

Before you actually upgrade any data, you should verify what the impact of the
upgrade is likely to be. In general, you can consider the upgrade process to have two
separate subprocesses. The first is to create a prepare window and the second is to
create an upgrade window. The prepare window is the time where you check how
much data has to be updated in the database, while the upgrade window is the time
when the upgrade actually occurs.

While not required, Oracle strongly recommends you perform the prepare window
step. In addition to finding out how much data will have to be modified during the
upgrade, thus giving you an estimate of how much time the upgrade will take, you
will also see any semantic errors that you may encounter. See "Error Handling when
Upgrading Time Zone File and Timestamp with Time Zone Data" on page 4-26.

You can create a prepare window to find the affected data using the following steps:

1. Install the desired (latest) time zone file to which you will be later migrating into
$ORACLE_HOME/oracore/zoneinfo. The desired (latest) version of
timezlrg_<version_number>.dat is required, while timezone_<version_
number>.dat may also be added at your discretion. These files can be found on
My Oracle Support.

2. You can optionally create an error table as well as a table that contains affected
timestamp with time zone information by using DBMS_DST .CREATE_ERROR_
TABLE and DBMS_DST.CREATE_AFFECTED_TABLE, respectively, If you do not,
Oracle Database uses the pre-built sys.dst$affected_tables and
sys.dst$error_table. These tables are used in step 4.

Datetime Data Types and Time Zone Support 4-19

Upgrading the Time Zone File and Timestamp with Time Zone Data

EXEC DBMS_DST.CREATE_AFFECTED_TABLE('my_affected_tables');
EXEC DBMS_DST.CREATE_ERROR_TABLE ('my_error_table');

Invoke DBMS_DST .BEGIN_PREPARE (<new_version>), which is the version
you chose in Step 1. See Oracle Database PL/SQL Packages and Types Reference for
more information regarding DBMS_DST privilege information.

Check the affected data by invoking DBMS_DST . FIND_AFFECTED_TABLES, and
verifying the affected columns by querying sys.dst$affected_tables. Also,
it is particularly important to check sys.dst$affected_tables.error_
count for possible errors. If the error count is greater than 0, you can check what
kind of errors might expect during the upgrade by checking sys.dst$error_
table. See "Error Handling when Upgrading Time Zone File and Timestamp
with Time Zone Data" on page 4-26.

End the prepare window by invoking DBMS_DST . END_PREPARE.

Note: Note that only one DBA should run the prepare window at
one time. Also, make sure to correct all errors before running the
upgrade.

Note: You can find the matrix of available patches for updating your
time zone files by going to My Oracle Support at
http://support.oracle.comand reading Document ID 412160.1.

Steps to Upgrade Time Zone File and Timestamp with Time Zone Data

Upgrading a time zone file and timestamp with time zone data contains the following
steps:

1.

If you have not already done so, download the desired (latest) version of
timezlrg_<version_number>.dat and install it in SORACLE_
HOME/oracore/zoneinfo. In addition, you can optionally download
timezone_<version_number>.dat from My Oracle Support and put it in the
same location.

Shut down the database. In Oracle RAC, you must shut down all instances.

Start up the database in UPGRADE mode. Note that, in Oracle RAC, only one
instance should be started. See Oracle Database Upgrade Guide for an explanation of
UPGRADE mode.

Execute DBMS_DST . BEGIN_UPGRADE (<new_version>). Optionally, you can
have two other parameters that you can specify to TRUE if you do not want to
ignore semantic errors during the upgrade of dictionary tables that contain
timestamp with time zone data. If you specify TRUE for either or both of these
parameters, the errors are populated into sys.dst$error_table by default. In
this case, you might want to truncate the error table before you begin the BEGIN_
UPGRADE procedure. See Oracle Database PL/SQL Packages and Types Reference for
more information.

If the BEGIN_UPGRADE execution fails, an ORA-56927 error (Starting an upgrade
window failed) is raised.

After BEGIN_UPGRADE finishes executing with errors, check sys.dst$error_
table to determine if the dictionary conversion was successful. If successful,
there will not be any rows in the table. If there are errors, correct these errors

4-20 Oracle Database Globalization Support Guide

Upgrading the Time Zone File and Timestamp with Time Zone Data

manually and rerun DBMS_DST . BEGIN_UPGRADE (<new_version>). See "Error
Handling when Upgrading Time Zone File and Timestamp with Time Zone Data"
on page 4-26.

6. Restart the database in normal mode.

7. Truncate the error and trigger tables (by default, sys.dst$error_table and
sys.dst$trigger_table).

The trigger table records the disabled TSTZ table triggers during the upgrade
process, which is passed as a parameter to DBMS_DST . UPGRADE_ * procedures.
Note that you can optionally create your own trigger table by calling DBMS_
DST.CREATE_TRIGGER_TABLE. During DBMS_DST.UPGRADE_*, Oracle
Database first disables the triggers on a TSTZ table before performing the upgrade
of its affected TSTZ data. Oracle Database also saves the information from those
triggers in sys.dsts$trigger_table. After completing the upgrade of the
affected TSTZ data in the table, those disabled triggers are enabled by reading
from sys.dst$trigger_table and then removed from sys.dst$Strigger_
table. If any fatal error occurs, such as an unexpected instance shutdown during
the upgrade process, you should check sys.dst$trigger_table to see if any
trigger has not been restored to its previous active state before the upgrade.

8. Upgrade the TSTZ data in all tables by invoking DBMS_DST . UPGRADE_
DATABASE.

9. Verify that all tables have finished being upgraded by querying the DBA_TSTZ_
TABLES view, as shown in "Example of Updating Daylight Saving Time Behavior"
on page 4-21. Then look at dst$error_table to see if there were any errors. If
there were errors, correct the errors and rerun DBMS_DST . UPGRADE_TABLE on
the relevant tables. Or, if you do not think those errors are important, re-run with
the parameters set to ignore errors.

10. End the upgrade window by invoking DBMS_DST . END_UPGRADE.

Note: Tables containing timestamp with time zone columns need to
be in a state where they can be updated. So, as an example, the
columns cannot have validated and disabled check constraints as this
prevents updating.

Oracle recommends that you use the parallel option if a table size is
greater than 2 Gigabytes. Oracle also recommends that you allow
Oracle to handle any semantic errors that may arise.

Note that, when you issue a CREATE statement for error, trigger, or
affected tables, you need to pass the table name only, not the schema
name. This is because the tables will be created in the current
invoker's schema.

Example of Updating Daylight Saving Time Behavior

This example illustrates updating DST behavior to Oracle Database 11g, release 2.
First, assume that your current database is using time zone version 3, and also assume
you have an existing table t, which contains timestamp with time zone data.

CONNECT scott/tiger
DROP TABLE t;
CREATE TABLE t (c NUMBER, mark VARCHAR(25), ts TIMESTAMP WITH TIME ZONE) ;

INSERT INTO t VALUES(1, 'nmot_affected',
to_timestamp_tz('22-sep-2006 13:00:00 america/los_angeles',

Datetime Data Types and Time Zone Support 4-21

Upgrading the Time Zone File and Timestamp with Time Zone Data

'dd-mon-yyyy hh24:mi:ss tzr tzd'));
INSERT INTO t VALUES (4, 'affected_err_exist',
to_timestamp_tz('ll-mar-2007 00:30:00 america/st_johns',
'dd-mon-yyyy hh24:mi:ss tzr tzd'));
INSERT INTO t VALUES (6, 'affected_no_err',
to_timestamp_tz('ll-mar-2007 01:30:00 america/st_johns',
'dd-mon-yyyy hh24:mi:ss tzr tzd'));
INSERT INTO t VALUES(14, 'affected_err_dup',
to_timestamp_tz('21-sep-2006 23:30:00 egypt',
'dd-mon-yyyy hh24:mi:ss tzr tzd'));
COMMIT;

Then, optionally, you can start a prepare window to check the affected data and
potential semantic errors where there is an overlap or non-existing time. To do this,
you should start a window for preparation to migrate to version 4. It is assumed that
you have the necessary privileges. These privileges are controlled with the DBMS_DST
package. See Oracle Database PL/SQL Packages and Types Reference for more information.

As an example, first, prepare the window.

conn / AS SYSDBA
set serveroutput on
EXEC DBMS_DST.BEGIN_PREPARE (4) ;

A prepare window has been successfully started.
PL/SQL procedure successfully completed.

Note that the argument 4 causes version 4 to be used in this statement. After this
window is successfully started, you can check the status of the DST in DATABASE_
PROPERTIES, as in the following:

SELECT PROPERTY_NAME, SUBSTR (property_value, 1, 30) value
FROM DATABASE_PROPERTIES

WHERE NAME LIKE 'DST_%'

ORDER BY PROPERTY_NAME;

You will see output resembling the following:

PROPERTY_NAME VALUE
DST_PRIMARY_TT_VERSION 3
DST_SECONDARY_TT_VERSION 4
DST_UPGRADE_STATE PREPARE

Next, you can invoke DBMS_DST . FIND_AFFECTED_TABLES to find all the tables in
the database that are affected if you upgrade from version 3 to version 4. This table
contains the table owner, table name, column name, row count, and error count. Here,
you have the choice of using the defaults for error tables (sys.dst$error_table)
and affected tables (sys.dst$affected_table) or you can create your own. In this
example, we create our own tables by using DBMS_DST . CREATE_ERROR_TABLE and
DBMS_DST.CREATE_AFFECTED_TABLEandth@lpassk)FIND_AFFECTED_TABLES
as in the following:

EXEC DBMS_DST.CREATE_AFFECTED_TABLE('scott.my_affected_tables');
EXEC DBMS_DST.CREATE_ERROR_TABLE ('scott.my_error_table');

It is a good idea to make sure that there are no rows in these tables. You can do this by
truncating the tables, as in the following:

TRUNCATE TABLE scott.my_affected_tables;

4-22 Oracle Database Globalization Support Guide

Upgrading the Time Zone File and Timestamp with Time Zone Data

TRUNCATE TABLE scott.my_error_table;
Then, you can invoke FIND_AFFECTED_TABLES to see which tables are impacted
during the upgrade:

EXEC DBMS_DST.FIND_AFFECTED_TABLES (affected_tables => 'scott.my_affected tables',
log_errors => TRUE,
log_errors_table => 'scott.my error_table');

Then, check the affected tables:

SELECT * FROM scott.my_affected_tables;
TABLE_OWNER TABLE NAME COLUMN_NAM ROW_COUNT ERROR_COUNT

Then, check the error table:

SELECT * FROM scott.my_error_table;

TABLE_OWNER TABLE_NAME COLUMN_NAME ROWID ERROR_NUMBER
SCOTT T TS AAAPW3AABAAANZOAAB 1878
SCOTT T TS AAAPW3AABAAANZOAAE 1883

These errors can be corrected by seeing "Error Handling when Upgrading Time Zone
File and Timestamp with Time Zone Data" on page 4-26. Then, end the prepare
window, as in the following statement:

EXEC DBMS_DST.END_PREPARE;
A prepare window has been successfully ended.
PL/SQL procedure successfully completed.

After this, you can check the DST status in DATABASE_PROPERTIES:

SELECT PROPERTY_NAME, SUBSTR (property_value, 1, 30) value
FROM DATABASE_PROPERTIES

WHERE PROPERTY_NAME LIKE 'DST_%'

ORDER BY PROPERTY_NAME;

PROPERTY_NAME VALUE
DST_PRIMARY TT VERSION 3
DST_SECONDARY_TT VERSION 0
DST_UPGRADE_STATE NONE

Next, you can use the upgrade window to upgrade the affected data. To do this, first,
start an upgrade window. Note that the database needs to be opened in UPGRADE
mode before you can execute DBMS_DST . BEGIN_UPGRADE. In Oracle RAC, only one
instance can be started. BEGIN_UPGRADE upgrades all dictionary tables in one
transaction, so the invocation will either succeed or fail as one whole. During the
procedure's execution, all user tables with TSTZ data are marked as an upgrade in
progress. See Oracle Database Upgrade Guide for more information.

Also, only SYSDBA can start an upgrade window. If you do not open the database in
UPGRADE mode and invoke BEGIN_UPGRADE, you will see the following error:

EXEC DBMS_DST.BEGIN_UPGRADE (4) ;
BEGIN DBMS_DST.BEGIN_UPGRADE(4); END;

Datetime Data Types and Time Zone Support 4-23

Upgrading the Time Zone File and Timestamp with Time Zone Data

*

ERROR at line 1:

ORA-56926: database must be in UPGRADE mode in order to start an upgrade window
ORA-06512: at "SYS.DBMS_SYS_ERROR", line 79

ORA-06512: at "SYS.DBMS_DST", line 1021

ORA-06512: at line 1

So, BEGIN_UPGRADE upgrades system tables that contain TSTZ data and marks user
tables (containing TSTZ data) with the UPGRADE_IN_PROGRESS property. This can be
checked in ALL_TSTZ_TABLES, and is illustrated later in this example.

There are two parameters in BEGIN_UPGRADE that are for handling semantic errors:
error_on_overlap_time (error number ORA-1883) and error_on_
nonexisting_time (error number ORA-1878). If the parameters use the default
setting of FALSE, Oracle converts the data using a default conversion and does not
signal an error. See "Error Handling when Upgrading Time Zone File and Timestamp
with Time Zone Data" on page 4-26 for more information regarding what they mean,
and how to handle errors.

The following call can automatically correct semantic errors based on some default
values when you upgrade the dictionary tables. If you do not ignore semantic errors,
and you do have such errors in the dictionary tables, BEGIN_UPGRADE will fail. These
semantic errors are populated into sys.dst$error_table.

EXEC DBMS_DST.BEGIN_UPGRADE (4) ;
An upgrade window has been successfully started.

PL/SQL procedure successfully completed.

After this, you can check the DST status in DATABASE_PROPERTIES, as in the
following:

SELECT PROPERTY_NAME, SUBSTR (property_value, 1, 30) value
FROM DATABASE_PROPERTIES

WHERE PROPERTY_NAME LIKE 'DST_%'

ORDER BY PROPERTY_NAME;

PROPERTY_NAME VALUE

DST_PRIMARY TT VERSION 4
DST_SECONDARY_TT VERSION 3
DST_UPGRADE_STATE UPGRADE

Then, check which user tables are marked with UPGRADE_IN_PROGRESS:

SELECT OWNER, TABLE_NAME, UPGRADE_IN_PROGRESS FROM ALL_TSTZ_TABLES;

OWNER TABLE_NAME UPGRADE_IN_PROGRESS
SYS WRI$_OPTSTAT_AUX_HISTORY NO
SYS WRI$_OPTSTAT_OPR NO
SYS OPTSTAT HIST CONTROLS NO
SYS SCHEDULERS_JOB NO
SYS KET$_AUTOTASK_STATUS NO
SYS AQS_ALERT QT_S NO
SYS AQ$_KUPCS$DATAPUMP_QUETAB_S NO
DBSNMP MGMT DB_FEATURE_LOG NO
WMSYS ~ WM$VERSIONED_TABLES NO
SYS WRI$_OPTSTAT_IND_HISTORY NO
SYS OPTSTAT_USER_PREFS$ NO

4-24 Oracle Database Globalization Support Guide

Upgrading the Time Zone File and Timestamp with Time Zone Data

SYS FGR$_FILE_GROUP_FILES NO
SYS SCHEDULERS_WINDOW NO
SYS WRR$_REPLAY DIVERGENCE NO
SCOTT T YES
IX AQ$_ORDERS_QUEUETABLE_S YES

In this output, dictionary tables (in the SYS schema) have already been upgraded by
BEGIN_UPGRADE. User tables, such as SCOTT . T, have not been and are in progress.

Now you can perform an upgrade of user tables using DBMS_DST . UPGRADE_
DATABASE. All tables need to be upgraded, otherwise, you will not be able to end the
upgrade window using the END_UPGRADE procedure. Before this step, you must
restart the database in normal mode. An example of the syntax is as follows:

VAR numfail number

BEGIN
DBMS_DST.UPGRADE_DATABASE (:numfail,

parallel => TRUE,
log_errors => TRUE,
log_errors_table => 'SYS.DSTSERROR_TABLE',
log_triggers_table => 'SYS.DSTSTRIGGER_TABLE',
error_on_overlap_time => TRUE,
error_on_nonexisting time => TRUE);

DBMS_OUTPUT.PUT_LINE('Failures:'|| :numfail);

END;

/

If there are any errors, you should correct them and use UPGRADE_TABLE on the
individual tables. In that case, you may need to handle tables related to materialized
views, such as materialized view base tables, materialized view log tables, and
materialized view container tables. There are a couple of considerations to keep in
mind when upgrading these tables. First, the base table and its materialized view log
table have to be upgraded atomically. Next, the materialized view container table has
to be upgraded after all its base tables and the materialized view log tables have been
upgraded. In general, Oracle recommends that you handle semantic errors by letting
Oracle Database take the default action.

For the sake of this example, let us assume there were some errors in SCOTT . T after
you ran UPGRADE_DATABASE. In that case, you can check these errors by issuing:

SELECT * FROM scott.error_ table;

TABLE_OWNER TABLE_NAME COLUMN_NAME ROWID ERROR_NUMBER
SCOTT T TS AAAO2XAABAAANTgAAD 1878
SCOTT T TS AAAQ2XAABAAANTgAAE 1878

From this output, you can see that error number 1878 has occurred. This error means
that an error has been thrown for a non-existing time.

To continue with this example, assume that SCOTT . T has a materialized view log
scott.mlog$_t, and that there is a single materialized view on SCOTT. T. Then,
assume that this 1878 error has been corrected.

Finally, you can upgrade the table, materialized view log and materialized view as
follows:

BEGIN
DBMS_DST.UPGRADE_TABLE (:numfail,
table_list => 'SCOTT.t, SCOTT.mlog$_T',

Datetime Data Types and Time Zone Support 4-25

Upgrading the Time Zone File and Timestamp with Time Zone Data

parallel => TRUE,
continue_after_errors => FALSE,
log_errors => TRUE,
log_errors_table => 'SYS.DSTSERROR_TABLE',
error_on_overlap_time => FALSE,
error_on_nonexisting time => TRUE,
log_triggers_table => 'SYS.DSTSTRIGGER_TABLE',
atomic_upgrade => TRUE) ;

DBMS_OUTPUT.PUT_LINE('Failures:'|| :numfail);

END;

/

BEGIN

DBMS_DST.UPGRADE_TABLE (:numfail,
table_list => 'SCOTT.MYMV_T',
parallel => TRUE,
continue_after_ errors => FALSE,
log_errors => TRUE,
log_errors_table => 'SYS.DSTSERROR_TABLE',
error_on_overlap_time => FALSE,
error_on_nonexisting time => TRUE,
log_triggers_table => 'SYS.DSTSTRIGGER_TABLE',
atomic_upgrade => TRUE) ;
DBMS_OUTPUT.PUT_LINE('Failures:'|| :numfail);
END;
/

The atomic_upgrade parameter enables you to combine the upgrade of the table
with its materialized view log. See Oracle Database PL/SQL Packages and Types Reference
for more information.

After all the tables are upgraded, you can invoke END_UPGRADE to end an upgrade
window, as in the following:

BEGIN

DBMS_DST.END_UPGRADE (:numfail OUT BINARY_INTEGER) ;
END;
/

If no other table was upgraded successfully, the END_UPGRADE statement fails.

See Oracle Database PL/SQL Packages and Types Reference for more information
regarding the DBMS_DST package.

Error Handling when Upgrading Time Zone File and Timestamp with Time Zone
Data

There are three major semantic errors that can occur during an upgrade. The first is
when an existing time becomes a non-existing time, the second is when a time
becomes duplicated, and the third is when a duplicate time becomes a non-duplicate
time.

As an example of the first case, consider the change from Pacific Standard Time (PST)
to Pacific Daylight Saving Time (PDT) in 2007. This change takes place on Mar-11-2007
at 2AM according to version 4 when the clock moves forward one hour to 3AM and
produces a gap between 2AM and 3AM. In version 2, this time change occurs on
Apr-01-2007. If you upgrade the time zone file from version 2 to version 4, any time in
the interval between 2AM and 3AM on Mar-11-2007 is not valid, and raises an error

4-26 Oracle Database Globalization Support Guide

Clients and Servers Operating with Different Versions of Time Zone Files

(ORA-1878) if ERROR_ON_NONEXISTING_TIME is set to TRUE. Therefore, there is a
non-existing time problem. When ERROR_ON_NONEXISTING_TIME is set to FALSE,
which is the default value for this parameter, the error is not reported and Oracle
preserves UTC time in this case. For example, "Mar-11-2007 02:30 PST" in version 2
becomes "Mar-11-2007 03:30 PDT" in version 4 as they both are translated to the same
UTC timestamp.

An example of the second case occurs when changing from PDT to PST. For example,
in version 4 for 2007, the change occurs on Nov-04-2007, when the time falls back from
2AM to 1AM. This means that times in the interval <1AM, 2AM> on Nov-04-2007 can
appear twice, once with PST and once with PDT. In version 2, this transition occurs on
Oct-28-2007 at 2AM. Thus, any timestamp within <1AM, 2AM> on Nov-04-2007,
which is uniquely identified in version 2, results in an error (ORA-1883) in version 4, if
ERROR_ON_OVERLAP_TIME is set to TRUE. If you leave this parameter on its default
setting of FALSE, then the UTC timestamp value is preserved and no error is raised. In
this situation, if you change the version from 2 to 4, timestamp "Nov-04-2007 01:30
PST" in version 2 becomes "Nov-04-2007 01:30 PST" in version 4.

The third case happens when a duplicate time becomes a non-duplicate time. Consider
the transition from PDT to PST in 2007, for example, where <1AM, 2AM> on
Oct-28-2007 in version 2 is the overlapped interval. Then both "Oct-28-2007 01:30 PDT"
and "Oct-28-2007 01:30 PST" are valid timestamps in version 2. If ERROR_ON_
OVERLAP_TIME is set to TRUE, an ORA-1883 error is raised during an upgrade from
version 2 to version 4. If ERROR_ON_OVERLAP_TIME is set to FALSE (the default value
of this parameter), however, the LOCAL time is preserved and no error is reported. In
this case, both "Oct-28-2007 01:30 PDT" and "Oct-28-2007 01:30 PST" in version 2
convert to the same "Oct-28-2007 01:30 PDT" in version 4. Note that setting ERROR_
ON_OVERLAP_TIME to FALSE can potentially cause some time sequences to be
reversed. For example, a job (Job A) scheduled at "Oct-28-2007 01:45 PDT" in version 2
is supposed to be executed before a job (Job B) scheduled at "Oct-28-2007 01:30 PST".
After the upgrade to version 4, Job A is scheduled at "Oct-28-2007 01:45 PDT" and Job
B remains at "Oct-28-2007 01:30 PDT", resulting in Job B being executed before Job A.
Even though unchained scheduled jobs are not guaranteed to be executed in a certain
order, this issue should be kept in mind when setting up scheduled jobs.

See Oracle Database PL/SQL Packages and Types Reference for more information
regarding how to use these parameters.

Clients and Servers Operating with Different Versions of Time Zone Files

In Oracle Database 11g, Release 11.2 (or higher), you can use different versions of time
zone file on the client and server; this mode of operation was not supported prior to
11.2. Both client and server must be 11.2 or higher to operate in such a mixed mode.
For the ramifications of working in such a mode, see Oracle Call Interface Programmer’s
Guide.

OCI, JDBC, Pro*C, and SQL*Plus clients can now continue to communicate with the
database server without having to update client-side time zone files. For other
products, if not explicitly stated in the product-specific documentation, it should be
assumed that such clients cannot operate with a database server with a different time
zone file than the client. Otherwise, computations on the TIMESTAMP WITH TIMEZONE
values that are region ID based may give inconsistent results on the client. This is due
to different daylight saving time (DST) rules in effect for the time zone regions affected
between the different time zone file versions at the client and on the server.

Note if an application connects to different databases directly or via database links, it
is recommended that all databases be on the same time zone file version. Otherwise,

Datetime Data Types and Time Zone Support 4-27

Setting the Database Time Zone

computations on the TIMESTAMP WITH TIMEZONE values on these different databases
may give inconsistent results. This is due to different DST rules in effect for the time
zone regions affected between the different time zone file versions across the different
database servers.

Setting the Database Time Zone

Set the database time zone when the database is created by using the SET TIME_ZONE
clause of the CREATE DATABASE statement. If you do not set the database time zone,
then it defaults to the time zone of the server's operating system.

The time zone may be set to a named region or an absolute offset from UTC. To set the
time zone to a named region, use a statement similar to the following example:

CREATE DATABASE db01
SET TIME_ZONE='Europe/London';

To set the time zone to an offset from UTC, use a statement similar to the following
example:

CREATE DATABASE db01
SET TIME_ZONE='-05:00';

The range of valid offsets is -12:00 to +14:00.

Note: The database time zone is relevant only for TIMESTAMP
WITH LOCAL TIME ZONE columns. Oracle recommends that you
set the database time zone to UTC (0:00) to avoid data conversion
and improve performance when data is transferred among
databases. This is especially important for distributed databases,
replication, and exporting and importing.

You can change the database time zone by using the SET TIME_ZONE clause of the
ALTER DATABASE statement. For example:

ALTER DATABASE SET TIME_ZONE='Europe/London';
ALTER DATABASE SET TIME_ZONE='-05:00';

The ALTER DATABASE SET TIME_ZONE statement returns an error if the database
contains a table with a TIMESTAMP WITH LOCAL TIME ZONE column and the
column contains data.

The change does not take effect until the database has been shut down and restarted.
You can find out the database time zone by entering the following query:

SELECT dbtimezone FROM DUAL;

Setting the Session Time Zone

You can set the default session time zone with the ORA_ SDTZ environment variable.
When users retrieve TIMESTAMP WITH LOCAL TIME ZONE data, Oracle Database
returns it in the users' session time zone. The session time zone also takes effect when
a TIMESTAMP value is converted to the TIMESTAMP WITH TIME ZONE or
TIMESTAMP WITH LOCAL TIME ZONE data type.

4-28 Oracle Database Globalization Support Guide

Converting Time Zones With the AT TIME ZONE Clause

Note: Setting the session time zone does not affect the value
returned by the SYSDATE and SYSTIMESTAMP SQL function.
SYSDATE returns the date and time of the operating system on
which the database resides, taking into account the time zone of the
database server's operating system that was in effect when the
database was started.

The ORA_SDTZ environment variable can be set to the following values:
s Operating system local time zone (' 0S_Tz")

= Database time zone ('DB_TZ ")

= Absolute offset from UTC (for example, ' -05:00")

= Time zone region name (for example, ' Europe/London ")

To set ORA_SDTZ, use statements similar to one of the following in a UNIX
environment (C shell):

oe

setenv ORA_SDTZ 'OS_TZ'
setenv ORA_SDTZ 'DB_TZ'
setenv ORA_SDTZ 'Europe/London'
setenv ORA_SDTZ '-05:00'

o oe

oe

You can change the time zone for a specific SQL session with the SET TIME_ZONE
clause of the ALTER SESSION statement.

TIME_ZONE can be set to the following values:

s Default local time zone when the session was started (local)
= Database time zone (dbtimezone)

= Absolute offset from UTC (for example, '+10:00")

= Time zone region name (for example, 'Asia/Hong_Kong')
Use ALTER SESSION statements similar to the following;:

ALTER SESSION SET TIME_ZONE=local;

ALTER SESSION SET TIME_ZONE=dbtimezone;
ALTER SESSION SET TIME_ZONE='Asia/Hong_Kong';
ALTER SESSION SET TIME_ZONE='+10:00"';

You can find out the current session time zone by entering the following query:

SELECT sessiontimezone FROM DUAL;

Converting Time Zones With the AT TIME ZONE Clause

A datetime SQL expression can be one of the following:
= A datetime column
= A compound expression that yields a datetime value

A datetime expression can include an AT LOCAL clause or an AT TIME ZONE clause.
If you include an AT LOCAL clause, then the result is returned in the current session
time zone. If you include the AT TIME ZONE clause, then use one of the following
settings with the clause:

Datetime Data Types and Time Zone Support 4-29

Support for Daylight Saving Time

= Time zone offset: The string ' (+ | -) HH: MM "' specifies a time zone as an offset from
UTC. For example, '-07:00 ' specifies the time zone that is 7 hours behind UTC.
For example, if the UTC time is 11:00 a.m., then the time in the ' -07: 00" time
zone is 4:00 a.m.

= DBTIMEZONE: Oracle Database uses the database time zone established (explicitly
or by default) during database creation.

= SESSIONTIMEZONE: Oracle Database uses the session time zone established by
default or in the most recent ALTER SESSION statement.

= Time zone region name: Oracle Database returns the value in the time zone
indicated by the time zone region name. For example, you can specify
Asia/Hong_Kong.

= An expression: If an expression returns a character string with a valid time zone
format, then Oracle Database returns the input in that time zone. Otherwise,
Oracle Database returns an error.

The following example converts the datetime value in the America/New_York time
zone to the datetime value in the America/Los_Angeles time zone.

Example 4-5 Converting a Datetime Value to Another Time Zone
SELECT FROM_TZ (CAST (TO_DATE('1999-12-01 11:00:00",
"YYYY-MM-DD HH:MI:SS') AS TIMESTAMP), 'America/New_York')
AT TIME ZONE 'America/Los_Angeles' "West Coast Time"
FROM DUAL;

West Coast Time

01-DEC-99 08.00.00.000000 AM AMERICA/LOS_ANGELES

See Also: Oracle Database SQL Language Reference

Support for Daylight Saving Time

Oracle Database automatically determines whether Daylight Saving Time is in effect
for a specified time zone and returns the corresponding local time. Normally,
date/time values are sufficient to allow Oracle Database to determine whether
Daylight Saving Time is in effect for a specified time zone. The periods when Daylight
Saving Time begins or ends are boundary cases. For example, in the Eastern region of
the United States, the time changes from 01:59:59 a.m. to 3:00:00 a.m. when Daylight
Saving Time goes into effect. The interval between 02:00:00 and 02:59:59 a.m. does not
exist. Values in that interval are invalid. When Daylight Saving Time ends, the time
changes from 02:00:00 a.m. to 01:00:01 a.m. The interval between 01:00:01 and 02:00:00
a.m. is repeated. Values from that interval are ambiguous because they occur twice.

To resolve these boundary cases, Oracle Database uses the TZR and TZD format
elements. TZR represents the time zone region in datetime input strings. Examples are
'Australia/North', 'UTC', and 'Singapore'. TZD represents an abbreviated form of
the time zone region with Daylight Saving Time information. Examples are 'PST' for
U. S. Pacific Standard Time and 'PDT' for U. S. Pacific Daylight Time. To see a list of
valid values for the TZR and TZD format elements, query the TZNAME and TZABBREV
columns of the V$TIMEZONE_NAMES dynamic performance view.

4-30 Oracle Database Globalization Support Guide

Support for Daylight Saving Time

See Also:

» Oracle Database SQL Language Reference for more information
regarding the session parameter ERROR_ON_OVERLAP_TIME

s "Time Zone Region Names" on page A-23 for a list of valid time
zones

Examples: The Effect of Daylight Saving Time on Datetime Calculations

The TIMESTAMP data type does not accept time zone values and does not calculate
Daylight Saving Time.

The TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE
data types have the following behavior:

= If a time zone region is associated with the datetime value, then the database
server knows the Daylight Saving Time rules for the region and uses the rules in
calculations.

= Daylight Saving Time is not calculated for regions that do not use Daylight Saving
Time.

The rest of this section contains examples that use datetime data types. The examples
use the global_orders table. It contains the orderdatel column of TIMESTAMP
data type and the orderdate2 column of TIMESTAMP WITH TIME ZONE data type.
The global_orders table is created as follows:

CREATE TABLE global_orders (orderdatel TIMESTAMP(O),
orderdate2 TIMESTAMP(0) WITH TIME ZONE) ;
INSERT INTO global_orders VALUES ('28-0CT-00 11:24:54 PM',
'28-0CT-00 11:24:54 PM America/New_York');

Example 4-6 Comparing Daylight Saving Time Calculations Using TIMESTAMP WITH
TIME ZONE and TIMESTAMP

SELECT orderdatel + INTERVAL '8' HOUR, orderdate2 + INTERVAL '8' HOUR
FROM global_orders;

The following output results:

ORDERDATE1+INTERVAL' 8 'HOUR ORDERDATE2+INTERVAL' 8 'HOUR

29-0CT-00 07.24.54.000000 AM 29-0CT-00 06.24.54.000000 AM AMERICA/NEW_YORK

This example shows the effect of adding 8 hours to the columns. The time period
includes a Daylight Saving Time boundary (a change from Daylight Saving Time to
standard time). The orderdatel column is of TIMESTAMP data type, which does not
use Daylight Saving Time information and thus does not adjust for the change that
took place in the 8-hour interval. The TIMESTAMP WITH TIME ZONE data type does
adjust for the change, so the orderdate2 column shows the time as one hour earlier
than the time shown in the orderdatel column.

Note: If you have created a global_orders table for the
previous examples, then drop the global_orders table before
you try Example 4-7 through Example 4-8.

Datetime Data Types and Time Zone Support 4-31

Support for Daylight Saving Time

Example 4-7 Comparing Daylight Saving Time Calculations Using TIMESTAMP WITH
LOCAL TIME ZONE and TIMESTAMP

The TIMESTAMP WITH LOCAL TIME ZONE data type uses the value of TIME_ZONE
that is set for the session environment. The following statements set the value of the
TIME_ZONE session parameter and create a global_orders table. The global_
orders table has one column of TIMESTAMP data type and one column of
TIMESTAMP WITH LOCAL TIME ZONE data type.

ALTER SESSION SET TIME_ZONE='America/New_York';
CREATE TABLE global_orders (orderdatel TIMESTAMP(0),

orderdate2 TIMESTAMP(0) WITH LOCAL TIME ZONE);
INSERT INTO global_orders VALUES ('28-0CT-00 11:24:54 PM',

'28-0CT-00 11:24:54 PM');

Add 8 hours to both columns.
SELECT orderdatel + INTERVAL '8' HOUR, orderdate2 + INTERVAL '8' HOUR
FROM global_orders;

Because a time zone region is associated with the datetime value for orderdate2, the
Oracle Database server uses the Daylight Saving Time rules for the region. Thus the
output is the same as in Example 4-6. There is a one-hour difference between the two
calculations because Daylight Saving Time is not calculated for the TIMESTAMP data
type, and the calculation crosses a Daylight Saving Time boundary.

Example 4-8 Daylight Saving Time Is Not Calculated for Regions That Do Not Use
Daylight Saving Time

Set the time zone region to UTC. UTC does not use Daylight Saving Time.

ALTER SESSION SET TIME_ZONE='UTC';

Truncate the global_orders table.

TRUNCATE TABLE global_orders;

Insert values into the global_orders table.
INSERT INTO global_orders VALUES ('28-0CT-00 11:24:54 PM',

TIMESTAMP '2000-10-28 23:24:54 ');
Add 8 hours to the columns.
SELECT orderdatel + INTERVAL '8' HOUR, orderdate2 + INTERVAL '8' HOUR
FROM global_orders;
The following output results.

ORDERDATE1+INTERVAL' 8 'HOUR ORDERDATE2+INTERVAL' 8 'HOUR

29-0CT-00 07.24.54.000000000 AM 29-0CT-00 07.24.54.000000000 AM UTC

The times are the same because Daylight Saving Time is not calculated for the UTC
time zone region.

4-32 Oracle Database Globalization Support Guide

O

Linguistic Sorting and String Searching

This chapter explains linguistic sorting and searching for strings in an Oracle Database
environment.

This chapter contains the following topics:

s Overview of Oracle Database Sorting Capabilities

s Using Binary Sorts

s Using Linguistic Sorts

= Linguistic Sort Features

» Case-Insensitive and Accent-Insensitive Linguistic Sorts
» Performing Linguistic Comparisons

= Using Linguistic Indexes

= Searching Linguistic Strings

= SQL Regular Expressions in a Multilingual Environment

Overview of Oracle Database Sorting Capabilities

Different languages have different sort orders. In addition, different cultures or
countries that use the same alphabets may sort words differently. For example, in
Danish, & is after Z, while Y and U are considered to be variants of the same letter.

Sort order can be case-sensitive or case-insensitive. Case refers to the condition of
being uppercase or lowercase. For example, in a Latin alphabet, A is the uppercase
glyph for a, the lowercase glyph.

Sort order can ignore or consider diacritics. A diacritic is a mark near or through a
character or combination of characters that indicates a different sound than the sound
of the character without the diacritic. For example, the cedilla (,) in facadeisa
diacritic. It changes the sound of c.

Sort order can be phonetic or it can be based on the appearance of the character. For
example, sort order can be based on the number of strokes in East Asian ideographs.
Another common sorting issue is combining letters into a single character. For
example, in traditional Spanish, ch is a distinct character that comes after ¢, which
means that the correct order is: cerveza, colorado, cheremoya. This means that the
letter ¢ cannot be sorted until Oracle Database has checked whether the next letter is
an h.

Oracle Database provides the following types of sorts:

= Binary sort

Linguistic Sorting and String Searching 5-1

Using Binary Sorts

= Monolingual linguistic sort
= Multilingual linguistic sort

These sorts achieve a linguistically correct order for a single language as well as a sort
based on the multilingual ISO standard (ISO 14651), which is designed to handle many
languages at the same time.

Using Binary Sorts

One way to sort character data is based on the numeric values of the characters
defined by the character encoding scheme. This is called a binary sort. Binary sorts are
the fastest type of sort. They produce reasonable results for the English alphabet
because the ASCII and EBCDIC standards define the letters A to Z in ascending
numeric value.

Note: In the ASCII standard, all uppercase letters appear before
any lowercase letters. In the EBCDIC standard, the opposite is true:
all lowercase letters appear before any uppercase letters.

When characters used in other languages are present, a binary sort usually does not
produce reasonable results. For example, an ascending ORDER BY query returns the
character strings ABC, ABZ, BCD, ABC, when A has a higher numeric value than B in the
character encoding scheme. A binary sort is not usually linguistically meaningful for
Asian languages that use ideographic characters.

Using Linguistic Sorts

To produce a sort sequence that matches the alphabetic sequence of characters,
another sort technique must be used that sorts characters independently of their
numeric values in the character encoding scheme. This technique is called a linguistic
sort. A linguistic sort operates by replacing characters with numeric values that reflect
each character's proper linguistic order.

Oracle Database offers two kinds of linguistic sorts: monolingual and multilingual.
This section includes the following topics:

= Monolingual Linguistic Sorts

= Multilingual Linguistic Sorts

= Multilingual Sorting Levels

s Linguistic Sort Examples

Monolingual Linguistic Sorts

Oracle Database compares character strings in two steps for monolingual sorts. The
first step compares the major value of the entire string from a table of major values.
Usually, letters with the same appearance have the same major value. The second step
compares the minor value from a table of minor values. The major and minor values
are defined by Oracle Database. Oracle Database defines letters with diacritic and case
differences as having the same major value but different minor values.

Each major table entry contains the Unicode code point and major value for a
character. The Unicode code point is a 16-bit binary value that represents a character.

5-2 Oracle Database Globalization Support Guide

Using Linguistic Sorts

Table 5-1 illustrates sample values for sorting a, A, &, 4, and b.

Table 5-1 Sample Glyphs and Their Major and Minor Sort Values

Glyph Major Value Minor Value
a 15 5

A 15 10

a 15 15

A 15 20

b 20 5

Note: Monolingual linguistic sorting is not available for
non-Unicode multibyte database character sets. If a monolingual
linguistic sort is specified when the database character set is
non-Unicode multibyte, then the default sort order is the binary sort
order of the database character set. One exception is UNICODE_
BINARY. This sort is available for all character sets.

See Also: "Overview of Unicode" on page 6-1

Multilingual Linguistic Sorts

Oracle Database provides multilingual linguistic sorts so that you can sort data in
more than one language in one sort. This is useful for regions or languages that have
complex sorting rules and for multilingual databases. As of Oracle Database 11g,
Oracle Database supports all of the sort orders defined by previous releases.

For Asian language data or multilingual data, Oracle Database provides a sorting
mechanism based on the ISO 14651 standard and the Unicode 5.0 standard. Chinese
characters are ordered by the number of strokes, PinYin, or radicals.

In addition, multilingual sorts can handle canonical equivalence and supplementary
characters. Canonical equivalence is a basic equivalence between characters or
sequences of characters. For example, ¢ is equivalent to the combination of ¢ and , .
Supplementary characters are user-defined characters or predefined characters in
Unicode that require two code points within a specific code range. You can define up
to 1.1 million code points in one multilingual sort.

For example, Oracle Database supports a monolingual French sort (FRENCH), but you
can specify a multilingual French sort (FRENCH_M). _M represents the ISO 14651
standard for multilingual sorting. The sorting order is based on the GENERIC_M
sorting order and can sort diacritical marks from right to left. Oracle recommends
using a multilingual linguistic sort if the tables contain multilingual data. If the tables
contain only French, then a monolingual French sort may have better performance
because it uses less memory. It uses less memory because fewer characters are defined
in a monolingual French sort than in a multilingual French sort. There is a tradeoff
between the scope and the performance of a sort.

See Also:
= "Canonical Equivalence" on page 5-7

= "Supplementary Characters" on page 6-2

Linguistic Sorting and String Searching 5-3

Using Linguistic Sorts

Multilingual Sorting Levels

Oracle Database evaluates multilingual sorts at three levels of precision:
= Primary Level Sorts
= Secondary Level Sorts

s Tertiary Level Sorts

Primary Level Sorts

A primary level sort distinguishes between base letters, such as the difference
between characters a and b. It is up to individual locales to define whether a is before
b, b is before a, or if they are equal. The binary representation of the characters is
completely irrelevant. If a character is an ignorable character, then it is assigned a
primary level order (or weight) of zero, which means it is ignored at the primary level.
Characters that are ignorable on other levels are given an order of zero at those levels.

For example, at the primary level, all variations of bat come before all variations of
bet. The variations of bat can appear in any order, and the variations of bet can
appear in any order:

Bat
bat
BAT
BET
Bet
bet

See Also: '"Ignorable Characters" on page 5-6

Secondary Level Sorts

A secondary level sort distinguishes between base letters (the primary level sort)
before distinguishing between diacritics on a given base letter. For example, the
character A differs from the character 2 only because it has a diacritic. Thus, A and A
are the same on the primary level because they have the same base letter (2) but differ
on the secondary level.

The following list has been sorted on the primary level (resume comes before
resumes) and on the secondary level (strings without diacritics come before strings
with diacritics):

resume
résumé
Résumé
Resumes
resumes
résumés

Tertiary Level Sorts

A tertiary level sort distinguishes between base letters (primary level sort), diacritics
(secondary level sort), and case (upper case and lower case). It can also include special
characters such as +, -, and *.

The following are examples of tertiary level sorts:

s Characters a and 2 are equal on the primary and secondary levels but different on
the tertiary level because they have different cases.

5-4 Oracle Database Globalization Support Guide

Linguistic Sort Features

Characters & and 2 are equal on the primary level and different on the secondary
and tertiary levels.

The primary and secondary level orders for the dash character - is 0. That is, it is
ignored on the primary and secondary levels. If a dash is compared with another
character whose primary level order is nonzero, for example, u, then no result for
the primary level is available because u is not compared with anything. In this
case, Oracle Database finds a difference between - and u only at the tertiary level.

The following list has been sorted on the primary level (resume comes before
resumes) and on the secondary level (strings without diacritics come before strings
with diacritics) and on the tertiary level (lower case comes before upper case):

resume
Resume

résumé
Résumé
resumes
Resumes
résumés
Résumés

Linguistic Sort Features

This section contains information about different features that a linguistic sort can
have:

Base Letters

Base Letters

Ignorable Characters
Contracting Characters
Expanding Characters
Context-Sensitive Characters
Canonical Equivalence
Reverse Secondary Sorting
Character Rearrangement for Thai and Laotian Characters
Special Letters

Special Combination Letters
Special Uppercase Letters

Special Lowercase Letters

You can customize linguistic sorts to include the desired characteristics.

See Also: Chapter 13, "Customizing Locale Data"

Base letters are defined in a base letter table, which maps each letter to its base letter.
For example, &, 2, &, and A all map to a, which is the base letter. This concept is
particularly relevant for working with Oracle Text.

See Also: Oracle Text Reference

Linguistic Sorting and String Searching 5-5

Linguistic Sort Features

Ignorable Characters

Some characters can be ignored in a linguistic sort. These characters are called
ignorable characters. There are two kinds of ignorable characters: diacritics and
punctuation.

Examples of ignorable diacritics are:
s *,sothat ré6le is treated the same as role
s The umlaut, so that naive is treated the same as naive

An example of an ignorable punctuation character is the dash character -. If it is
ignored, then multi-lingual can be treated that same asmultilingual and
e-mail can be treated the same as email.

Contracting Characters

Sorting elements usually consist of a single character, but in some locales, two or more
characters in a character string must be considered as a single sorting element during
sorting. For example, in traditional Spanish, the string ch is composed of two
characters. These characters are called contracting characters in multilingual linguistic
sorting and special combination letters in monolingual linguistic sorting.

Do not confuse a composed character with a contracting character. A composed
character like & can be decomposed into a and ', each with their own encoding. The
difference between a composed character and a contracting character is that a
composed character can be displayed as a single character on a terminal, while a
contracting character is used only for sorting, and its component characters must be
rendered separately.

Expanding Characters

In some locales, certain characters must be sorted as if they were character strings. An
example is the German character 3 (sharp s). It is sorted exactly the same as the string
SS. Another example is that & sorts as if it were oe, after od and before of. These
characters are known as expanding characters in multilingual linguistic sorting and
special letters in monolingual linguistic sorting. Just as with contracting characters,
the replacement string for an expanding character is meaningful only for sorting.

Context-Sensitive Characters

In Japanese, a prolonged sound mark that resembles an em dash — represents a length
mark that lengthens the vowel of the preceding character. The sort order depends on
the vowel that precedes the length mark. This is called context-sensitive sorting. For
example, after the character ka, the —length mark indicates a long a and is treated the
same as a, while after the character ki, the — length mark indicates a long i and is
treated the same as i. Transliterating this to Latin characters, a sort might look like

this:

kaa

ka— -- kaa and ka— are the same

kai -- kai follows ka- because i1 is after a
kia -- kia follows kai because i1 is after a
kii -- kii follows kia because i is after a
ki— -- kii and ki- are the same

5-6 Oracle Database Globalization Support Guide

Linguistic Sort Features

Canonical Equivalence

Canonical equivalence is an attribute of a multilingual sort and describes how
equivalent code point sequences are sorted. If canonical equivalence is applied in a
particular linguistic sort, then canonically equivalent strings are treated as equal.

One Unicode code point can be equivalent to a sequence of base letter code points plus
diacritic code points. This is called the Unicode canonical equivalence. For example, &
equals its base letter a and an umlaut. A linguistic flag, CANONICAL_EQUIVALENCE =
TRUE, indicates that all canonical equivalence rules defined in Unicode need to be
applied in a specific linguistic sort. Oracle Database-defined linguistic sorts include the
appropriate setting for the canonical equivalence flag. You can set the flag to FALSE to
speed up the comparison and ordering functions if all the data is in its composed
form.

For example, consider the following strings:

= &da (a umlaut followed by a)

= a"b(afollowed by umlaut followed by b)

= &c (a umlaut followed by c)

If CANONICAL_EQUIVALENCE=FALSE, then the sort order of the strings is:

a"b
aa
ac

This occurs because a comes before & if canonical equivalence is not applied.
If CANONICAL_EQUIVALENCE=TRUE, then the sort order of the strings is:
da

a’b
ac

This occurs because & and a™ are treated as canonically equivalent.

You can use Oracle Locale Builder to view the setting of the canonical equivalence flag
in existing multilingual sorts. When you create a customized multilingual sort with
Oracle Locale Builder, you can set the canonical equivalence flag as desired.

See Also: "Creating a New Linguistic Sort with the Oracle Locale
Builder" on page 13-26 for more information about setting the
canonical equivalence flag

Reverse Secondary Sorting

In French, sorting strings of characters with diacritics first compares base letters from
left to right, but compares characters with diacritics from right to left. For example, by
default, a character with a diacritic is placed after its unmarked variant. Thus Edit
comes before Edit in a French sort. They are equal on the primary level, and the
secondary order is determined by examining characters with diacritics from right to
left. Individual locales can request that the characters with diacritics be sorted with the
right-to-left rule. Set the REVERSE_SECONDARY linguistic flag to TRUE to enable
reverse secondary sorting.

See Also: "Creating a New Linguistic Sort with the Oracle Locale

Builder" on page 13-26 for more information about setting the
reverse secondary flag

Linguistic Sorting and String Searching 5-7

Linguistic Sort Features

Character Rearrangement for Thai and Laotian Characters

In Thai and Lao, some characters must first change places with the following character
before sorting. Normally, these types of characters are symbols representing vowel
sounds, and the next character is a consonant. Consonants and vowels must change
places before sorting. Set the SWAP_WITH_NEXT linguistic flag for all characters that
must change places before sorting.

See Also: "Creating a New Linguistic Sort with the Oracle Locale
Builder" on page 13-26 for more information about setting the
SWAP_WITH_NEXT flag

Special Letters
Special letters is a term used in monolingual sorts. They are called expanding

characters in multilingual sorts.

See Also: "Expanding Characters" on page 5-6

Special Combination Letters

Special combination letters is the term used in monolingual sorts. They are called
contracting letters in multilingual sorts.

See Also: "Contracting Characters" on page 5-6

Special Uppercase Letters

One lowercase letter may map to multiple uppercase letters. For example, in
traditional German, the uppercase letters for 3 are SS.

These case conversions are handled by the NL.S_UPPER, NLS_LOWER, and NLS_
INITCAP SQL functions, according to the conventions established by the linguistic
sort sequence. The UPPER, LOWER, and INITCAP SQL functions cannot handle these
special characters, because their casing operation is based on binary mapping defined
for the underlying character set, which is not linguistic sensitive.

The NLS_UPPER SQL function returns all uppercase characters from the same
character set as the lowercase string. The following example shows the result of the
NLS_UPPER function when NLS_SORT is set to XGERMAN:

SELECT NLS_UPPER ('grofe') "Uppercase" FROM DUAL;
GROSSE
See Also: Oracle Database SQL Language Reference

Special Lowercase Letters

Oracle Database supports special lowercase letters. One uppercase letter may map to
multiple lowercase letters. An example is the Turkish uppercase I becoming a small,
dotless i.

5-8 Oracle Database Globalization Support Guide

Case-Insensitive and Accent-Insensitive Linguistic Sorts

Case-Insensitive and Accent-Insensitive Linguistic Sorts

Operation inside an Oracle database is always sensitive to the case and the accents
(diacritics) of the characters. Sometimes you may need to perform case-insensitive or
accent-insensitive comparisons and sorts.

In previous versions of the database, case-insensitive queries could be achieved by
using the NL.S_UPPER and NLS_LOWER SQL functions. The functions change the case
of strings based on a specific linguistic sort definition. This enables you to perform
case-insensitive searches regardless of the language being used. For example, create a
table called test1 as follows:

SQL> CREATE TABLE testl (word VARCHAR2 (12));
SQL> INSERT INTO testl VALUES('GROSSE');
SQL> INSERT INTO testl VALUES('Grofe');
SQL> INSERT INTO testl VALUES('grofRe');
SQL> SELECT * FROM testl;

GROSSE
Grofie
grofie

Perform a case-sensitive search for GROSSE as follows:

SQL> SELECT word FROM testl WHERE word='GROSSE';

GROSSE

Perform a case-insensitive search for GROSSE using the NLS_UPPER function:

SELECT word FROM testl
WHERE NLS_UPPER (word, 'NLS_SORT = XGERMAN') = 'GROSSE';

GROSSE
Grofse
grofRe

Oracle Database provides case-insensitive and accent-insensitive options for linguistic
sorts. It provides the following types of monolingual and multilingual linguistic sorts:

» Linguistic sorts that use information about base letters, diacritics, punctuation, and
case. These are the standard monolingual and multilingual linguistic sorts that are
described in "Using Linguistic Sorts" on page 5-2.

» Linguistic sorts that use information about base letters, diacritics, and punctuation.
This type of sort is called case-insensitive.

s Linguistic sorts that use information about base letters only. This type of sort is
called accent-insensitive. (Accent is another word for diacritic.) An
accent-insensitive sort is always case-insensitive as well.

The rest of this section contains the following topics:
= Examples of Case-Insensitive and Accent-Insensitive Sorts

= Specifying a Case-Insensitive or Accent-Insensitive Sort

Linguistic Sorting and String Searching 5-9

Case-Insensitive and Accent-Insensitive Linguistic Sorts

See Also:
= "NLS_SORT" on page 3-30
= "NLS_COMP" on page 3-31

Examples of Case-Insensitive and Accent-Insensitive Sorts

The following examples show:
= A sort that uses information about base letters, diacritics, punctuation, and case
m A case-insensitive sort

s An accent-insensitive sort

Example 5-1 Linguistic Sort Using Base Letters, Diacritics, Punctuation, and Case
Information

The following list has been sorted using information about base letters, diacritics,
punctuation, and case:

blackbird
black bird
black-bird
Blackbird
Black-bird
blackbird
blackbird

Example 5-2 Case-Insensitive Linguistic Sort

The following list has been sorted using information about base letters, diacritics, and
punctuation, ignoring case:

black bird
black-bird
Black-bird
blackbird
Blackbird
blackbird
blackbird

black-birdand Black-bird have the same value in the sort, because the only
different between them is case. They could appear interchanged in the list.
Blackbird and blackbird also have the same value in the sort and could appear
interchanged in the list.

Example 5-3 Accent-Insensitive Linguistic Sort

The following list has been sorted using information about base letters only. No
information about diacritics, punctuation, or case has been used.

blackbird
bléackbird
blackbird
Blackbird
BlackBird
Black-bird
Black bird

5-10 Oracle Database Globalization Support Guide

Case-Insensitive and Accent-Insensitive Linguistic Sorts

Specifying a Case-Insensitive or Accent-Insensitive Sort

Use the NLS_SORT session parameter to specify a case-insensitive or accent-insensitive
sort:

= Append _CI to an Oracle Database sort name for a case-insensitive sort.

= Append _AT to an Oracle Database sort name for an accent-insensitive and
case-insensitive sort.

For example, you can set NLS_SORT to the following types of values:

FRENCH_M_AI
XGERMAN_CI

Binary sorts can also be case-insensitive or accent-insensitive. When you specify
BINARY_CT as a value for NLS_SORT, it designates a sort that is accent-sensitive and
case-insensitive. BINARY_AI designates an accent-insensitive and case-insensitive
binary sort. You may want to use a binary sort if the binary sort order of the character
set is appropriate for the character set you are using.

For example, with the NLS_LANG environment variable set to AMERICAN_
AMERICA.WEBISO8859P1, create a table called test2 and populate it as follows:

SQL> CREATE TABLE test2 (letter VARCHAR2(10));
SQL> INSERT INTO test2 VALUES('&a');

SQL> INSERT INTO test2 VALUES('a');
SQL> INSERT INTO test2 VALUES('A');
SQL> INSERT INTO test2 VALUES('Z')
SQL> SELECT * FROM test2;

1

The default value of NL.S_SORT is BINARY. Use the following statement to do a binary
sort of the characters in table test2:

SELECT * FROM test2 ORDER BY letter;

To change the value of NLS_SORT, enter a statement similar to the following:

ALTER SESSION SET NLS_SORT=BINARY_CI;

The following table shows the sort orders that result from setting NLS_SORT to
BINARY, BINARY_CTI, and BINARY_AT.

BINARY BINARY_CI BINARY_AI

A a a
Z A a
a Z A
a a Z

When NLS_SORT=BINARY, uppercase letters come before lowercase letters. Letters
with diacritics appear last.

Linguistic Sorting and String Searching 5-11

Case-Insensitive and Accent-Insensitive Linguistic Sorts

When the sort considers diacritics but ignores case (BINARY_CT), the letters with
diacritics appear last.

When both case and diacritics are ignored (BINARY_AT), & is sorted with the other
characters whose base letter is a. All the characters whose base letter is a occur before
Z.

You can use binary sorts for better performance when the character set is US7ASCII or
another character set that has the same sort order as the binary sorts.

The following table shows the sort orders that result from German sorts for the table.

GERMAN GERMAN_CI GERMAN_AI

a a a
A A a
a a A
Z Z Z

A German sort places lowercase letters before uppercase letters, and & occurs before Z.
When the sort ignores both case and diacritics (GERMAN_AT), & appears with the other
characters whose base letter is a.

Linguistic Sort Examples

The examples in this section demonstrate a binary sort, a monolingual sort, and a
multilingual sort. To prepare for the examples, create and populate a table called
test3. Enter the following statements:

SQL> CREATE TABLE test3 (name VARCHAR2 (20));
SQL> INSERT INTO test3 VALUES('Diet');

SQL> INSERT INTO test3 VALUES(‘A voir');
SQL> INSERT INTO test3 VALUES('Freizeit');

Example 5-4 Binary Sort
The ORDER BY clause uses a binary sort.

SQL> SELECT * FROM test3 ORDER BY name;

You should see the following output:

Diet
Freizeit
A voir

Note that a binary sort results in A voir being at the end of the list.

Example 5-5 Monolingual German Sort

Use the NLSSORT function with the NLS_SORT parameter set to german to obtain a
German sort.

SQL> SELECT * FROM test3 ORDER BY NLSSORT (name, 'NLS_SORT=german');

You should see the following output:
A voir

Diet

Freizeit

5-12 Oracle Database Globalization Support Guide

Performing Linguistic Comparisons

Note that A voir is at the beginning of the list in a German sort.

Example 5-6 Comparing a Monolingual German Sort to a Multilingual Sort

Insert the character string shown in Figure 5-1 into test. It is a D with a crossbar
followed by fi.

Figure 5-1 Character String

bn

Perform a monolingual German sort by using the NLSSORT function with the NLS_
SORT parameter set to german.

SQL> SELECT * FROM test2 ORDER BY NLSSORT(name, 'NLS_SORT=german');

The output from the German sort shows the new character string last in the list of
entries because the characters are not recognized in a German sort.

Perform a multilingual sort by entering the following statement:

SQL> SELECT * FROM test2 ORDER BY NLSSORT (name, 'NLS_SORT=generic_m');
The output shows the new character string after Diet, following ISO sorting rules.

See Also:
s "The NLSSORT Function" on page 9-7

= "NLS_SORT" on page 3-30 for more information about setting
and changing the NLS_SORT parameter

Performing Linguistic Comparisons

When performing SQL comparison operations, characters are compared according to
their binary values. A character is greater than another if it has a higher binary value.
Because the binary sequences rarely match the linguistic sequences for most
languages, such comparisons may not be meaningful for a typical user. To achieve a
meaningful comparison, you can specify behavior by using the session parameters
NLS_COMP and NLS_SORT. The way you set these two parameters determines the
rules by which characters are sorted and compared.

The NLS_COMP setting determines how NLS_SORT is handled by the SQL operations.
There are three valid values for NL.S_ COMP:

s BINARY

All SQL sorts and comparisons are based on the binary values of the string
characters, regardless of the value set to NLS_SORT. This is the default setting.

s LINGUISTIC

All SQL sorting and comparison are based on the linguistic rule specified by NL.S_
SORT. For example, NLS_COMP=LINGUISTIC and NLS_SORT=BINARY_CI means
the collation sensitive SQL operations will use binary value for sorting and
comparison but ignore character case.

s ANSI

Linguistic Sorting and String Searching 5-13

Performing Linguistic Comparisons

A limited set of SQL functions honor the NLS_SORT setting. ANST is available for
backward compatibility only. In general, you should set NLS_COMP to
LINGUISTIC when performing linguistic comparison.

Table 5-2 shows how different SQL operations behave with these different settings.

Table 5-2 Linguistic Comparison Behavior with NLS_COMP Settings

BINARY LINGUISTIC ANSI
SQL Operators
UNION, INTERSECT, MINUS Binary Honors NLLS_SORT Binary
SQL Functions
DECODE Binary Honors NLLS_SORT Binary
INSTRx Binary Honors NLS_SORT Binary
LEAST, GREATEST Binary Honors NLLS_SORT Binary
MAX, MIN Binary Honors NLLS_SORT Binary

NLS_TINITCAP

NLS_LOWER

NLS_UPPER

NLSSORT

NULLIF

REGEXP_COUNT

REGEXP_INSTR

REGEXP_LIKE

REGEXP_REPLACE

REGEXP_SUBSTR

REPLACE

RTRIM, TRIM, LTRIM

TRANSLATE, TRANSLATE USING
SQL Expressions

= 1=,>,<,>=,<=

BETWEEN, NOT BETWEEN

CASE

DISTINCT

GROUP

GROUP BY

HAVING

IN, NOT IN

LIKE

ORDER BY

START WITH

UNIQUE

Honors NL'S_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Binary

Honors NLS_SORT
Honors NL'S_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Binary

Binary

Binary

Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Honors NLS_SORT
Binary
Binary

Honors NL'S_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NL'S_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NL'S_SORT
Honors NL'S_SORT

Honors NLLS_SORT

Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NL'S_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT

Honors NLLS_SORT

Honors NL'S_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Binary

Honors NLS_SORT
Honors NL'S_SORT
Honors NLS_SORT
Honors NLS_SORT
Honors NLS_SORT
Binary

Binary

Binary

Honors NLS_SORT
Honors NLS_SORT
Binary
Binary
Binary
Binary
Honors NLS_SORT
Honors NLS_SORT
Binary
Honors NLS_SORT
Honors NL'S_SORT

Binary

5-14 Oracle Database Globalization Support Guide

Performing Linguistic Comparisons

See "NLS_COMP" and "NLS_SORT" for information regarding these parameters.

Collation Keys

When the comparison conditions =, !=, >, <, >=, <=, BETWEEN, NOT BETWEEN, IN, NOT
IN, the query clauses ORDER BY or GROUP BY, or the aggregate function

COUNT (DISTINCT) are evaluated according to linguistic rules specified by NLS_
SORT, the compared argument values are first transformed to binary values called
collation keys and then compared byte by byte, like RAW values. If a monolingual sort
is applied, collation keys contain major values for characters of the source value
concatenated with minor values for those characters. If a multilingual sort is applied,
collation keys contain concatenated primary, secondary, and tertiary values.

The collation keys are the same values that are returned by the NLSSORT function.
That is, activating the linguistic behavior of these SQL operations is equivalent to
including their arguments into calls to the NLSSORT function.

Restricted Precision of Linguistic Comparison

As collation keys are values of the data type RAW and the maximum length of a RAW
value is 2000 bytes, the maximum length of a collation key is restricted to 2000 bytes. If
a full source character value yields a collation key longer than 2000 bytes, the collation
key generated for this value is calculated for a maximum prefix (initial substring) of
the value for which the calculated result does not exceed 2000 bytes. For monolingual
sorts, the prefix length is typically 1000 characters. For multilingual sorts, the prefix is
typically 500 characters. The exact length may be higher or lower and depends on the
particular collation and the particular characters contained in the source value.

The implication of this method of collation key generation is that SQL operations
using the collation keys to implement the linguistic behavior will return results that
may ignore trailing parts of long arguments. For example, two character values
starting with the same 1000 characters but differing somewhere after the 1000th
character will be grouped together by the GROUP BY clause.

Linguistic Comparison Examples
The following examples illustrate behavior with different NL.S_COMP settings.

Example 5-7 Binary Comparison Binary Sort

The following illustrates behavior with a binary setting:

SQL> ALTER SESSION SET NLS_COMP=BINARY;
SQL> ALTER SESSION SET NLS_SORT=BINARY;
SQL> SELECT ename FROM empl;

McCoye

Mccathye
McCafeé

5 rows selected

SQL> SELECT ename FROM empl WHERE ename LIKE 'McC%e';

ENAME

Linguistic Sorting and String Searching 5-15

Performing Linguistic Comparisons

1 row selected

Example 5-8 Linguistic Comparison Binary Case-Insensitive Sort

The following illustrates behavior with a case-insensitive setting:

SQL> ALTER SESSION SET NLS_COMP=LINGUISTIC;
SQL> ALTER SESSION SET NLS_SORT=BINARY_CI;
SQL> SELECT ename FROM empl WHERE ename LIKE 'McC%e';

McCoye
Mccathye

2 rows selected

Example 5-9 Linguistic Comparison Binary Accent-Insensitive Sort

The following illustrates behavior with an accent-insensitive setting:
SQL> ALTER SESSION SET NLS_COMP=LINGUISTIC;

SQL> ALTER SESSION SET NLS_SORT=BINARY_ATI;
SQL> SELECT ename FROM empl WHERE ename LIKE 'McC%e';

McCoye
Mccathye
McCafeé

3 rows selected

Example 5-10 Linguistic Comparisons Returning Fewer Rows

Some operations may return fewer rows after applying linguistic rules. For example,
with a binary setting, McAfee and Mcafee are different:

SQL> ALTER SESSION SET NLS_COMP=BINARY;
SQL> ALTER SESSION SET NLS_SORT=BINARY;
SQL> SELECT DISTINCT ename FROM emp2;

McAfee
Mcafee
McCoy

3 rows selected

However, with a case-insensitive setting, McAfee and Mcafee are the same:

SQL> ALTER SESSION SET NLS_COMP=LINGUISTIC;
SQL> ALTER SESSION SET NLS_SORT=BINARY_CI;
SQL> SELECT DISTINCT ename FROM emp2;

5-16 Oracle Database Globalization Support Guide

Using Linguistic Indexes

McCoy
2 rows selected

In this example, either McAfee or Mcafee could be returned from the DISTINCT
operation. There is no guarantee exactly which one will be picked.

Example 5-11 Linguistic Comparisons Using XSPANISH

There are cases where characters the are same using binary comparison but different
using linguistic comparison. For example, with a binary setting, the character C in
Cindy, Chad, and Clara represents the same letter C:

SQL> ALTER SESSION SET NLS_COMP=BINARY;
SQL> ALTER SESSION SET NLS_SORT=BINARY;
SQL> SELECT ename FROM emp3 WHERE ename LIKE 'C%';

3 rows selected

In a database session with the linguistic rule set to traditional Spanish, XSPANISH, ch
is treated as one character. So the letter c in Chad is different than the letter C in
Cindy and Clara:

SQL> ALTER SESSION SET NLS_COMP=LINGUISTIC;
SQL> ALTER SESSION SET NLS_SORT=XSPANISH;
SQL> SELECT ename FROM emp3 WHERE ename LIKE 'C%';

2 rows selected

And the letter ¢ in combination ch is different than the c standing by itself:

SQL> SELECT REPLACE ('character', 'c', 't') "Changes" FROM DUAL;

Changes

charatter

Using Linguistic Indexes

Linguistic sorting is language-specific and requires more data processing than binary
sorting. Using a binary sort for ASCII is accurate and fast because the binary codes for
ASCII characters reflect their linguistic order. When data in multiple languages is
stored in the database, you may want applications to sort the data returned from a
SELECT. . .ORDER BY statement according to different sort sequences depending on
the language. You can accomplish this without sacrificing performance by using
linguistic indexes. Although a linguistic index for a column slows down inserts and
updates, it greatly improves the performance of linguistic sorting with the ORDER BY
clause and the WHERE clause.

Linguistic Sorting and String Searching 5-17

Using Linguistic Indexes

You can create a function-based index that uses languages other than English. The
index does not change the linguistic sort order determined by NL.S_SORT. The
linquistic index simply improves the performance.

The following statement creates an index based on a German sort:

CREATE TABLE my_table (name VARCHAR(20) NOT NULL) ;
CREATE INDEX nls_index ON my_table (NLSSORT(name, 'NLS_SORT = German'));

/*The NOT NULL in the CREATE TABLE statement ensures that the index is used*/

After the index has been created, enter a SELECT statement similar to the following
example:

SELECT * FROM my_table ORDER BY name
WHERE name LIKE 'Hein%';

It returns the result much faster than the same SELECT statement without a linguistic
index.

The rest of this section contains the following topics:
= Supported SQL Operations and Functions for Linguistic Indexes
= Linguistic Indexes for Multiple Languages

= Requirements for Using Linguistic Indexes

See Also:
» Oracle Database Concepts

» Oracle Database SQL Language Reference for more information
about function-based indexes

Supported SQL Operations and Functions for Linguistic Indexes

Linguistic index support is available for the following collation-sensitive SQL
operations and SQL functions:

s Comparison conditions =, ! =, >, <, >=, <=

= Range conditions BETWEEN | NOT BETWEEN

= IN | NOTIN

= ORDER BY

= GROUP BY

s LIKE (LIKE, LIKE2, LIKE4, LIKEC)

s DISTINCT

= UNIQUE

= UNION

s INTERSECT

s MINUS

The SQL functions in the following list cannot utilize linguistic index:
m INSTR (INSTR, INSTRB, INSTR2, INSTR4, INSTRC)

s MAX

5-18 Oracle Database Globalization Support Guide

Using Linguistic Indexes

MIN
REPLACE
TRIM
LTRIM
RTRIM

TRANSLATE

Linguistic Indexes for Multiple Languages

There are three ways to build linguistic indexes for data in multiple languages:

Build a linguistic index for each language that the application supports. This
approach offers simplicity but requires more disk space. For each index, the rows
in the language other than the one on which the index is built are collated together
at the end of the sequence. The following example builds linguistic indexes for
French and German.

CREATE INDEX french_index ON employees (NLSSORT (employee_id, 'NLS_
SORT=FRENCH')) ;
CREATE INDEX german_index ON employees (NLSSORT (employee_id, 'NLS_
SORT=GERMAN')) ;

Oracle Database chooses the index based on the NL.S_SORT session parameter or
the arguments of the NLSSORT function specified in the ORDER BY clause. For
example, if the NL'S_SORT session parameter is set to FRENCH, then Oracle
Database uses french_index. When it is set to GERMAN, Oracle Database uses
german_index.

Build a single linguistic index for all languages. This requires a language column
(LANG_COL in "Example: Setting Up a French Linguistic Index" on page 5-20) to be
used as a parameter of the NLSSORT function. The language column contains
NLS_LANGUAGE values for the data in the column on which the index is built. The
following example builds a single linguistic index for multiple languages. With
this index, the rows with the same values for NL.S_ LANGUAGE are sorted together.

CREATE INDEX i ON t (NLSSORT(col, 'NLS_SORT=' || LANG_COL));
Queries choose an index based on the argument of the NLSSORT function specified
in the ORDER BY clause.

Build a single linguistic index for all languages using one of the multilingual
linguistic sorts such as GENERIC_M or FRENCH_M. These indexes sort characters
according to the rules defined in ISO 14651. For example:

CREATE INDEX i on t (NLSSORT(col,
'NLS_SORT=GENERIC_M') ;

See Also: "Multilingual Linguistic Sorts" on page 5-3 for more
information about Unicode sorts

Requirements for Using Linguistic Indexes

The following are requirements for using linguistic indexes:

Set NLS_SORT Appropriately

Specify NOT NULL in a WHERE Clause If the Column Was Not Declared NOT
NULL

Linguistic Sorting and String Searching 5-19

Searching Linguistic Strings

This section also includes:

= Example: Setting Up a French Linguistic Index

Set NLS_SORT Appropriately

The NLS_SORT parameter should indicate the linguistic definition you want to use for
the linguistic sort. If you want a French linguistic sort order, then NLS_SORT should be
set to FRENCH. If you want a German linguistic sort order, then NLS_SORT should be
set to GERMAN.

There are several ways to set NLS_SORT. You should set NLS_SORT as a client
environment variable so that you can use the same SQL statements for all languages.
Different linguistic indexes can be used when NLS_SORT is set in the client
environment.

See Also: "NLS_SORT" on page 3-30

Specify NOT NULL in a WHERE Clause If the Column Was Not Declared NOT NULL

When you want to use the ORDER BY column_name clause with a column that has a
linguistic index, include a WHERE clause like the following example:

WHERE NLSSORT (column_name) IS NOT NULL

This WHERE clause is not necessary if the column has already been defined as a NOT
NULL column in the schema.

Example: Setting Up a French Linguistic Index

The following example shows how to set up a French linguistic index. You may want
to set NLS_SORT as a client environment variable instead of using the ALTER SESSION
statement.

ALTER SESSION SET NLS_SORT='FRENCH';

CREATE INDEX test_idx ON test4 (NLSSORT (name, 'NLS_SORT=FRENCH'));
SELECT * FROM test4 ORDER BY col;

ALTER SESSION SET NLS_COMP=LINGUISTIC;

SELECT * FROM test4 WHERE name > 'Henri';

Note: The SQL functions MAX () and MIN() cannot use linguistic
indexes when NLS_COMP is set to LINGUISTIC.

Searching Linguistic Strings

Searching and sorting are related tasks. Organizing data and processing it in a
linguistically meaningful order is necessary for proper business processing. Searching
and matching data in a linguistically meaningful way depends on what sort order is
applied. For example, searching for all strings greater than ¢ and less than £ produces
different results depending on the value of NLS_SORT. In an ASCII binary sort the
search finds any strings that start with d or e but excludes entries that begin with
upper case D or E or accented e with a diacritic, such as &. Applying an
accent-insensitive binary sort returns all strings that start with d, D, and accented e,
such as £ or &. Applying the same search with NLS_SORT set to XSPANISH also
returns strings that start with ch, because ch is treated as a composite character that
sorts between ¢ and d in traditional Spanish. This chapter discusses the kinds of sorts
that Oracle Database offers and how they affect string searches by SQL and SQL
regular expressions.

5-20 Oracle Database Globalization Support Guide

SQL Regular Expressions in a Multilingual Environment

See Also:
= "Linguistic Sort Features" on page 5-5

= "SQL Regular Expressions in a Multilingual Environment" on
page 5-21

SQL Regular Expressions in a Multilingual Environment

Regular expressions provide a powerful method of identifying patterns of strings
within a body of text. Usage ranges from a simple search for a string such as San
Francisco to the more complex task of extracting all URLs to finding all words
whose every second character is a vowel. SQL and PL/SQL support regular
expressions in Oracle Database.

Traditional regular expression engines were designed to address only English text.
However, regular expression implementations can encompass a wide variety of
languages with characteristics that are very different from western European text. The
implementation of regular expressions in Oracle Database is based on the Unicode
Regular Expression Guidelines. The REGEXP SQL functions work with all character
sets that are supported as database character sets and national character sets.
Moreover, Oracle Database enhances the matching capabilities of the POSIX regular
expression constructs to handle the unique linguistic requirements of matching
multilingual data.

Oracle Database enhancements of the linguistic-sensitive operators are described in
the following sections:

» Character Range '[x-y]' in Regular Expressions

s Collation Element Delimiter '[. .]' in Regular Expressions
» Character Class [: :]' in Regular Expressions

» Equivalence Class '[= =] in Regular Expressions

= Examples: Regular Expressions

See Also:

» Oracle Database Advanced Application Developer’s Guide for more
information about regular expression syntax

» Oracle Database SQL Language Reference for more information
about REGEX SQL functions

Character Range '[x-y]' in Regular Expressions

According to the POSIX standard, a range in a regular expression includes all collation
elements between the start point and the end point of the range in the linguistic
definition of the current locale. Therefore, ranges in regular expressions are meant to
be linguistic ranges, not byte value ranges, because byte value ranges depend on the
platform, and the end user should not be expected to know the ordering of the byte
values of the characters. The semantics of the range expression must be independent
of the character set. This implies that a range such as [a-d] includes all the letters
between a and d plus all of those letters with diacritics, plus any special case collation
element such as ch in Traditional Spanish that is sorted as one character.

Oracle Database interprets range expressions as specified by the NL.S_SORT parameter
to determine the collation elements covered by a given range. For example:

Expression: [a-d]e

Linguistic Sorting and String Searching 5-21

SQL Regular Expressions in a Multilingual Environment

NLS_SORT: BINARY

Does not match: cheremoya
NLS_SORT: XSPANISH
Matches: >>che<<remoya

Collation Element Delimiter '[. .]' in Regular Expressions

This construct is introduced by the POSIX standard to separate collating elements. A
collating element is a unit of collation and is equal to one character in most cases.
However, the collation sequence in some languages may define two or more
characters as a collating element. The historical regular expression syntax does not
allow the user to define ranges involving multicharacter collation elements. For
example, there was no way to define a range from a to ch because ch was interpreted
as two separate characters.

By using the collating element delimiter [. .], you can separate a multicharacter
collation element from other elements. For example, the range from a to ch can be
written as [a-[.ch.]].It can also be used to separate single-character collating
elements. If youuse [. .] toenclose a multicharacter sequence that is not a defined
collating element, then it is considered as a semantic error in the regular expression.
For example, [.ab.] is considered invalid if ab is not a defined multicharacter
collating element.

Character Class '[: :]' in Regular Expressions

In English regular expressions, the range expression can be used to indicate a character
class. For example, [a-z] can be used to indicate any lowercase letter. However, in
non-English regular expressions, this approach is not accurate unless a is the first
lowercase letter and z is the last lowercase letter in the collation sequence of the
language.

The POSIX standard introduces a new syntactical element to enable specifying explicit
character classes in a portable way. The [: :] syntax denotes the set of characters
belonging to a certain character class. The character class definition is based on the
character set classification data.

Equivalence Class '[= =]' in Regular Expressions

Oracle Database also supports equivalence classes through the [= =] syntax as
recommended by the POSIX standard. A base letter and all of the accented versions of
the base constitute an equivalence class. For example, the equivalence class [=a=]
matches & as well as 4. The current implementation does not support matching of
Unicode composed and decomposed forms for performance reasons. For example, & (a
umlaut) does not match 'a followed by umlaut'.

Examples: Regular Expressions

The following examples show regular expression matches.

Example 5-12 Case-Insensitive Match Using the NLS_SORT Value

Case sensitivity in an Oracle Database regular expression match is determined at two
levels: the NL.S_SORT initialization parameter and the runtime match option. The
REGEXP functions inherit the case-sensitivity behavior from the value of NLS_SORT by
default. The value can also be explicitly overridden by the runtime match option "¢
(case sensitive) or 'i' (case insensitive).

Expression: catalog(ue)?

5-22 Oracle Database Globalization Support Guide

SQL Regular Expressions in a Multilingual Environment

NLS_SORT: GENERIC_M CI
Matches:

>>Catalog<<
>>catalogue<<
>>CATALOG<<

Oracle Database SQL syntax:

SQL> ALTER SESSION SET NLS_SORT='GENERIC_M_CI';
SQL> SELECT col FROM test WHERE REGEXP_LIKE(col, 'catalog(ue)?');

Example 5-13 Case Insensitivity Overridden by the Runtime Match Option

Expression: catalog(ue)?
NLS_SORT: GENERIC_M CI
Match option: 'c'
Matches:

>>catalogue<<

Does not match:

Catalog

CATALOG

Oracle Database SQL syntax:

SQL> ALTER SESSION SET NLS_SORT='GENERIC_M CI';
SQL> SELECT col FROM test WHERE REGEXP_LIKE(col, 'catalog(ue)?','c');

Example 5-14 Matching with the Collation Element Operator [..]

Expression: ["-a-[.ch.]]+ /*with NLS_SORT set to xspanish*/
Matches:

>>driver<<

Does not match:

cab

Oracle Database SQL syntax:

SQL> SELECT col FROM test WHERE REGEXP_LIKE(col,'(["-a-[.ch.]]+');

Example 5-15 Matching with the Character Class Operator [::]

This expression looks for 6-character strings with lowercase characters. Note that
accented characters are matched as lowercase characters.

Expression: [[:lower:]]{6}

Database character set: WE8IS08859P1
Matches:

>>maltre<<

>>mobile<<

>>padjaro<<

>>zurlick<<

Oracle Database SQL syntax:

SQL> SELECT col FROM test WHERE REGEXP_LIKE(col,'[[:lower:]]{6}");

Example 5-16 Matching with the Base Letter Operator [==]

Expression: r[[=e=]]sum[[=e=]]
Matches:

>>resume<<

>>résumé<<

>>résume<<

Linguistic Sorting and String Searching 5-23

SQL Regular Expressions in a Multilingual Environment

>>resumé<<

Oracle Database SQL syntax:

SQL> SELECT col FROM test WHERE REGEXP_LIKE(col, 'r[[=e=]]sum[[=e=]]");

See Also:

» Oracle Database Advanced Application Developer’s Guide for more
information about regular expression syntax

» Oracle Database SQL Language Reference for more information
about REGEX SQL functions

5-24 Oracle Database Globalization Support Guide

6

Supporting Multilingual Databases with
Unicode

This chapter illustrates how to use Unicode in an Oracle Database environment. This
chapter includes the following topics:

= Overview of Unicode

= Whatis Unicode?

» Implementing a Unicode Solution in the Database
» Unicode Case Studies

= Designing Database Schemas to Support Multiple Languages

Overview of Unicode

Unicode is a character encoding system that defines every character in most of the
spoken languages in the world.

To overcome the limitations of existing character encodings, several organizations
began working on the creation of a global character set in the late 1980s. The need for
this became even greater with the development of the World Wide Web in the
mid-1990s. The Internet has changed how companies do business, with an emphasis
on the global market that has made a universal character set a major requirement.

A global character set needs to fulfill the following conditions:
= Contain all major living scripts
= Support legacy data and implementations

= Be simple enough that a single implementation of an application is sufficient for
worldwide use

A global character set should also have the following capabilities:
= Support multilingual users and organizations

= Conform to international standards

= Enable worldwide interchange of data

Unicode, which is now in wide use, meets all of the requirments and capabilities of a
global character set.

Supporting Multilingual Databases with Unicode 6-1

What is Unicode?

What is Unicode?

Unicode is a universally encoded character set that enables information from any
language to be stored using a single character set. Unicode provides a unique code
value for every character, regardless of the platform, program, or language.

The Unicode standard has been adopted by many software and hardware vendors.
Many operating systems and browsers now support Unicode. Unicode is required by
standards such as XML, Java, JavaScript, LDAP, and WML. It is also synchronized
with the ISO/IEC 10646 standard.

Oracle Database introduced Unicode as a database character set in Oracle Database 7.
In Oracle Database 11g, Unicode support has been expanded, and supports Unicode
5.0.

See Also: http://www.unicode.org for more information
about the Unicode standard

This section contains the following topics:

= Supplementary Characters

= Unicode Encodings

= Support for Unicode in Oracle Database

Supplementary Characters

The first version of Unicode was a 16-bit, fixed-width encoding that used two bytes to
encode each character. This enabled 65,536 characters to be represented. However,
more characters need to be supported, especially additional CJK ideographs that are
important for the Chinese, Japanese, and Korean markets.

Unicode defines supplementary characters to meet this need. It uses two 16-bit code
points (also known as supplementary characters) to represent a single character. The
implementation of supplementary characters enables more than a million additional
characters to be defined.

Adding supplementary characters has increased the complexity of Unicode; however,
this is less complex than managing several different encodings in the same
configuration.

Unicode Encodings

The Unicode standard encodes characters in different ways: UTF-8, UCS-2, and
UTEF-16. Conversion between different Unicode encodings is a simple bit-wise
operation that is defined in the Unicode standard.

This section contains the following topics:

s UTF-8 Encoding

s UCS-2 Encoding

s UTF-16 Encoding

s Examples: UTF-16, UTF-8, and UCS-2 Encoding

UTF-8 Encoding

UTE-8 is the 8-bit encoding of Unicode. It is a variable-width encoding and a strict
superset of ASCII. This means that each and every character in the ASCII character set

6-2 Oracle Database Globalization Support Guide

What is Unicode?

is available in UTF-8 with the same code point values. One Unicode character can be 1
byte, 2 bytes, 3 bytes, or 4 bytes in UTF-8 encoding. Characters from the European
scripts are represented in either 1 or 2 bytes. Characters from most Asian scripts are
represented in 3 bytes. Supplementary characters are represented in 4 bytes.

UTF-8 is the Unicode encoding used for HTML and most Internet browsers.
The benefits of UTF-8 are as follows:

s Compact storage requirement for European scripts because it is a strict superset of
ASCII

= Ease of migration between ASCII-based characters sets and UTF-8

See Also:
= "Supplementary Characters" on page 6-2

» Table B-2, " Unicode Character Code Ranges for UTF-8
Character Codes" on page B-2

UCS-2 Encoding

UCS-2 is a fixed-width, 16-bit encoding. Each character is 2 bytes. UCS-2 is the
Unicode encoding used for internal processing by Java before version J2SE 5.0 and by
Microsoft Windows NT. UCS-2 supports characters defined for Unicode 3.0, so there is
no support for supplementary characters.

The benefits of UCS-2 over UTF-8 are as follows:
= More compact storage for Asian scripts, because all characters are two bytes
» Faster string processing, because characters are fixed-width

= Better compatibility with Java and Microsoft clients

See Also: "Supplementary Characters" on page 6-2

UTF-16 Encoding

UTEF-16 encoding is the 16-bit encoding of Unicode. UTF-16 is an extension of UCS-2
because it supports the supplementary characters by using two UCS-2 code points for
each supplementary character. UTF-16 is a strict superset of UCS-2.

One character can be either 2 bytes or 4 bytes in UTF-16. Characters from European
and most Asian scripts are represented in 2 bytes. Supplementary characters are
represented in 4 bytes. UTF-16 is the main Unicode encoding used for internal
processing by Java since version J2SE 5.0 and by Microsoft Windows since version
2000.

The benefits of UTF-16 over UTF-8 are as follows:

= More compact storage for Asian scripts because most of the commonly used Asian
characters are represented in two bytes.

= Better compatibility with Java and Microsoft clients

See Also:
= "Supplementary Characters" on page 6-2

» Table B-1, " Unicode Character Code Ranges for UTF-16
Character Codes" on page B-1

Supporting Multilingual Databases with Unicode 6-3

What is Unicode?

Examples: UTF-16, UTF-8, and UCS-2 Encoding

Figure 6-1 shows some characters and their character codes in UTF-16, UTE-8, and
UCS-2 encoding. The last character is a treble clef (a music symbol), a supplementary

character.

Figure 6—1 UTF-16, UTF-8, and UCS-2 Encoding Examples

Character | UTF-16 UTF-8 UCsS-2
A 0041 41 | 0041

c 0063 63 | 0063
o) 00F6 C3B6 | 00F6
3 4E9C E4 BA9C | 4E9C
b D834 DD1E FO9D 84 9E | N/A

Support for Unicode in Oracle Database

Oracle Database began supporting Unicode as a database character set in release 7.
Table 6-1 summarizes the Unicode character sets supported by Oracle Database.

Table 6-1 Unicode Character Sets Supported by Oracle Database

Supported in

RDBMS Unicode Database National
Character Set Release Encoding Unicode Version Character Set Character Set
AL24UTFFSS 7.2-8i UTF-8 1.1 Yes No
UTE8 8.0-11g UTEF-8 For Oracle Database Yes Yes (Oracle9i

6-4 Oracle Database Globalization Support Guide

release 8.0 through
Oracle8i Release 8.1.6: 2.1

For Oracle8i; Database
release 8.1.7 and later: 3.0

Database and
newer only)

Implementing a Unicode Solution in the Database

Table 6—1 (Cont.) Unicode Character Sets Supported by Oracle Database

Supported in

RDBMS Unicode Database National
Character Set Release Encoding Unicode Version Character Set Character Set
UTFE 8.0-11¢g UTF-EBCDIC For Oracle8i Database Yes No
releases 8.0 through 8.1.6:
2.1

For Oracle8i Database
release 8.1.7 and later: 3.0

AL32UTF8 9i-11g UTF-8 Oracle9i Database release Yes No
1: 3.0

Oracle9i Database release
2:3.1

Oracle Database 10g,
release 1: 3.2

Oracle Database 10g,
release2: 4.0

Oracle Database 11¢: 5.0

AL16UTF16 9i-11g UTF-16 Oracle9i Database release No Yes
1:3.0

Oracle9i Database release
2:3.1

Oracle Database 10g,
release 1: 3.2

Oracle Database 10g,
release 2: 4.0

Oracle Database 11g: 5.0

Implementing a Unicode Solution in the Database
Unicode characters can be stored in an Oracle database in two ways:

= You can create a Unicode database that enables you to store UTF-8 encoded
characters as SQL CHAR data types (CHAR, VARCHAR2, CLOB, and LONG) .

s If you prefer to implement Unicode support incrementally, or if you need to
support multilingual data only in certain columns, then you can store Unicode
data in either the UTF-16 or UTF-8 encoding form in SQL NCHAR data types
(NCHAR, NVARCHARZ2, and NCLOB). The SQL NCHAR data types are called Unicode
data types because they are used only for storing Unicode data.

Note: You can combine a Unicode database solution with a
Unicode data type solution.

The following sections explain how to use the two Unicode solutions and how to
choose between them:

= Enabling Multilingual Support with Unicode Databases
= Enabling Multilingual Support with Unicode Data Types
s How to Choose Between a Unicode Database and a Unicode Data Type Solution

s Comparing Unicode Character Sets for Database and Data Type Solutions

Supporting Multilingual Databases with Unicode 6-5

Implementing a Unicode Solution in the Database

Enabling Multilingual Support with Unicode Databases

The database character set specifies the encoding to be used in the SQL CHAR data
types as well as the metadata such as table names, column names, and SQL
statements. A Unicode database is a database with a UTF-8 character set as the
database character set. There are three Oracle character sets that implement the UTE-8
encoding. The first two are designed for ASCII-based platforms while the third one
should be used on EBCDIC platforms.

s AL32UTEF8

The AL32UTEFS8 character set supports the latest version of the Unicode standard. It
encodes characters in one, two, or three bytes. Supplementary characters require
four bytes. It is for ASCII-based platforms.

s UTF8

The UTFS8 character set encodes characters in one, two, or three bytes. It is for
ASClI-based platforms.

Supplementary characters inserted into a UTF8 database do not corrupt the data in
the database. A supplementary character is treated as two separate, user-defined
characters that occupy 6 bytes. Oracle recommends that you switch to AL32UTF8
for full support of supplementary characters in the database character set.

» UTFE

The UTFE character set is for EBCDIC platforms. It is similar to UTF8 on ASCII
platforms, but it encodes characters in one, two, three, and four bytes.
Supplementary characters are converted as two 4-byte characters.

Example 6-1 Creating a Database with a Unicode Character Set

To create a database with the AL32UTEF8 character set, use the CREATE DATABASE
statement and include the CHARACTER SET AL32UTF8 clause. For example:

CREATE DATABASE sample

CONTROLFILE REUSE

LOGFILE

GROUP 1 ('diskx:logl.log', 'disky:logl.log') SIZE 50K,
GROUP 2 ('diskx:log2.log', 'disky:1log2.log') SIZE 50K
MAXLOGFILES 5

MAXLOGHISTORY 100

MAXDATAFILES 10

MAXINSTANCES 2

ARCHIVELOG

CHARACTER SET AL32UTF8

NATIONAL CHARACTER SET AL16UTF16

DATAFILE

'diskl:dfl.dbf' AUTOEXTEND ON,

'disk2:df2.dbf' AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
DEFAULT TEMPORARY TABLESPACE temp_ts

UNDO TABLESPACE undo_ts

SET TIME_ZONE = '+02:00';

Note: Specify the database character set when you create the
database.

6-6 Oracle Database Globalization Support Guide

Implementing a Unicode Solution in the Database

Enabling Multilingual Support with Unicode Data Types

An alternative to storing Unicode data in the database is to use the SQL NCHAR data
types (NCHAR, NVARCHAR, NCLOB). You can store Unicode characters in columns of

these data types regardless of how the database character set has been defined. The
NCHAR data type is exclusively a Unicode data type, which means that it stores data
encoded as Unicode.

You can create a table using the NVARCHAR2 and NCHAR data types. The column
length specified for the NCHAR and NVARCHAR2 columns always equals the number of
characters instead of the number of bytes:

CREATE TABLE product_information
(product_id NUMBER (6)
, product_name NVARCHAR2 (100)
, product_description VARCHAR2 (1000));

The encoding used in the SQL NCHAR data types is the national character set specified
for the database. You can specify one of the following Oracle character sets as the
national character set:

» AL16UTF16

This is the default character set for SQL NCHAR data types. This character set
encodes Unicode data in the UTF-16 encoding. It supports supplementary
characters, which are stored as four bytes.

» UTF8

When UTES is specified for SQL NCHAR data types, the data stored in the SQL data
types is in UTF-8 encoding.

You can specify the national character set for the SQL NCHAR data types when you
create a database using the CREATE DATABASE statement with the NATIONAL
CHARACTER SET clause. The following statement creates a database with
WESISO8859P1 as the database character set and AL16UTF16 as the national character
set.

Example 6-2 Creating a Database with a National Character Set

CREATE DATABASE sample

CONTROLFILE REUSE

LOGFILE

GROUP 1 ('diskx:logl.log', 'disky:logl.log') SIZE 50K,
GROUP 2 ('diskx:log2.log', 'disky:log2.log') SIZE 50K
MAXLOGFILES 5

MAXLOGHISTORY 100

MAXDATAFILES 10

MAXINSTANCES 2

ARCHIVELOG

CHARACTER SET WEB8IS08859P1

NATIONAL CHARACTER SET AL16UTF16

DATAFILE

'diskl:dfl.dbf' AUTOEXTEND ON,

'disk2:df2.dbf' AUTOEXTEND ON NEXT 10M MAXSIZE UNLIMITED
DEFAULT TEMPORARY TABLESPACE temp_ts

UNDO TABLESPACE undo_ts

SET TIME_ZONE = '+02:00';

Supporting Multilingual Databases with Unicode 6-7

Implementing a Unicode Solution in the Database

How to Choose Between a Unicode Database and a Unicode Data Type Solution

Table 6-2 Using

To choose the correct Unicode solution for your database, consider the following
questions:

= Programming environment: What are the main programming languages used in
your applications? How do they support Unicode?

= Ease of migration: How easily can your data and applications be migrated to take
advantage of the Unicode solution?

s Types of data: Is your data mostly Asian or European? Do you need to store
multilingual documents into LOB columns?

= Types of applications: What type of applications are you implementing: a
packaged application or a customized end-user application?

This section describes some general guidelines for choosing a Unicode database or a
Unicode data type solution. The final decision largely depends on your exact
environment and requirements. This section contains the following topics:

s When Should You Use a Unicode Database?
s When Should You Use Unicode Data Types?

When Should You Use a Unicode Database?
Use a Unicode database in the situations described in Table 6-2.

a Unicode Database

Situation Explanation

You need easy code If your existing application is mainly written in Java and PL/SQL and your main
migration for Java or concern is to minimize the code changes required to support multiple languages, then
PL/SQL. you may want to use a Unicode database solution. If the data types used to stored

You have evenly

data remain as SQL CHAR data types, then the Java and PL/SQL code that accesses
these columns does not need to change.

If the multilingual data is evenly distributed in existing schema tables and you are not

distributed multilingual sure which tables contain multilingual data, then you should use a Unicode database

data.

because it does not require you to identify the kind of data that is stored in each
column.

Your SQL statements and You must use a Unicode database. SQL statements and PL/SQL code are converted
PL/SQL code contain into the database character set before being processed. If the SQL statements and

Unicode data.

You want to store

PL/SQL code contain characters that cannot be converted to the database character
set, then those characters are lost. A common place to use Unicode data in a SQL
statement is in a string literal.

You must use a Unicode database. The BLOB data is converted to the database

multilingual documents in character set before being indexed by Oracle Text. If your database character set is not

BLOB format and use UTES, then data is lost when the documents contain characters that cannot be
Oracle Text for content converted to the database character set.
searching.

When Should You Use Unicode Data Types?
Use Unicode data types in the situations described in Table 6-3.

6-8 Oracle Database Globalization Support Guide

Implementing a Unicode Solution in the Database

Table 6-3 Using Unicode Data Types

Situation

Explanation

You want to add
multilingual support
incrementally.

You want to build a

packaged application.

You want better
performance with
single-byte database
character sets.

You require UTF-16
support in Windows
clients.

If you want to add Unicode support to the existing database without migrating the
character set, then consider using Unicode data types to store Unicode data. You can add
columns of the SQL NCHAR data types to existing tables or new tables to support multiple
languages incrementally.

If you are building a packaged application to sell to customers, then you may want to
build the application using SQL NCHAR data types. The SQL NCHAR data type is a reliable
Unicode data type in which the data is always stored in Unicode, and the length of the
data is always specified in UTF-16 code units. As a result, you need to test the application
only once. The application will run on customer databases with any database character
set.

If performance is your main concern, then consider using a single-byte database character
set and storing Unicode data in the SQL NCHAR data types.

If your applications are written in Visual C/C++ or Visual Basic running on Windows,
then you may want to use the SQL NCHAR data types. You can store UTF-16 data in SQL
NCHAR data types in the same way that you store it in the wchar_t buffer in Visual
C/C++ and string buffer in Visual Basic. You can avoid buffer overflow in client
applications because the length of the wchar_t and string data types match the length
of the SQL NCHAR data types in the database.

Note: You can use a Unicode database with Unicode data types.

Comparing Unicode Character Sets for Database and Data Type Solutions

Oracle provides two solutions to store Unicode characters in the database: a Unicode
database solution and a Unicode data type solution. After you select the Unicode
database solution, the Unicode data type solution, or a combination of both, you then
determine the character set to be used in the Unicode database or the Unicode data

type.
Table 64 contains advantages and disadvantages of character sets for a Unicode

database solution. The Oracle character sets that can be Unicode database character
sets are AL32UTES8, UTFS, and UTFE.

Supporting Multilingual Databases with Unicode 6-9

Implementing a Unicode Solution in the Database

Table 6—4 Character Set Advantages and Disadvantages for a Unicode Database Solution

Database
Character Set Advantages Disadvantages
AL32UTF8 = Supplementary characters are storedin4 | s You cannot specify the length of SQL CHAR types in
bytes, so there is no data conversion number of UCS-2 code points for supplementary
when supplementary characters are characters. Supplementary characters are treated as
retrieved and inserted if the client setting one code point rather than the standard two code
is UTF-8. points.
» The storage for supplementary characters | The binary order for SQL CHAR columns is different
requires less disk space in AL32UTF8 from the binary order of SQL NCHAR columns when
than in UTFS. the data consists of supplementary characters. As a
result, CHAR columns and NCHAR columns do not
always have the same sort for identical strings.
UTF8 = You can specify the length of SQL CHAR | = Supplementary characters are stored as 6 bytes
types in number of UCS-2 code points. instead of the 4 bytes defined by Unicode 4.0. As a
. The binary order of the SQL CHAR result, Oracle has to Conve{'t data fpr o
columns is alwavs the same as the bina supplementary characters if the client setting is
Y o UTE-8.
order of the SQL NCHAR columns when
the data consists of the same
supplementary characters. As a result,
CHAR columns and NCHAR columns have
the same sort for identical strings.
UTFE = This is the only Unicode character set for | s Supplementary character are stored as 8 bytes (two
the EBCDIC platform. 4-byte sequences) instead of the 5 bytes defined by
. You can specify the length of SQL CHAR the Unicgde sftam}i\ard. As a lresult, Orac}lf has to
types in number of UCS-2 code points. convert data for those supplementary characters.
=+ The binary order of the SQL CHAR = UTFE is not a standard gncoding in the Unicode
columns is alwavs the same as the bina standard. As a result, clients requiring standard
y Y UTEF-8 encoding must convert data from UTFE to
order of the SQL NCHAR columns when g mu . .
the data consists of the same the standard encoding when data is retrieved and
i d
supplementary characters. As a result, Inserted.
CHAR columns and NCHAR columns have
the same sort for identical strings.

Table 6-5 contains advantages and disadvantages of different character sets for a
Unicode data type solution. The Oracle character sets that can be national character
sets are AL16UTF16 and UTFS8. The default is AL16UTF16.

6-10 Oracle Database Globalization Support Guide

Unicode Case Studies

Table 6-5 Character Set Advantages and Disadvantages for a Unicode Data Type Solution

National

Character Set Advantages Disadvantages

AL16UTF16 = Asian data in AL16UTF16 is usually more = European ASCII data requires more disk
compact than in UTF8. As a result, you save disk space to store in AL16UTF16 than in UTFS.
space and have less disk I/O when most of the If most of your data is European data, then
multilingual data stored in the database is Asian it uses more disk space than if it were
data. UTFS8 data.

= Itis usually faster to process strings encoded in » The maximum lengths for NCHAR and
the AL16UTF16 character set than strings encoded NVARCHAR2 are 1000 and 2000 characters,
in UTF8 because Oracle processes most characters which is less than the lengths for NCHAR
in an AL16UTF16 encoded string as fixed-width (2000) and NVARCHAR? (4000) in UTFS.
characters.

s The maximum length limits for the NCHAR and
NVARCHAR2 columns are 1000 and 2000
characters, respectively. Because the data is
fixed-width, the lengths are guaranteed.

UTEF8 s European data in UTFS is usually more compact | = Asian data requires more disk space to
than in AL16UTF16. As a result, you save disk store in UTF8 than in AL16UTF16. If most
space and have better response time when most of your data is Asian data, then disk space
of the multilingual data stored in the database is usage is not less efficient than when the
European data. character set is AL1I6UTF16.

= The maximum lengths for the NCHAR and = Although you can specify larger length
NVARCHAR2 columns are 2000 and 4000 characters limits for NCHAR and NVARCHAR, you are
respectively, which is more than those for NCHAR not guaranteed to be able to insert the
(1000) and NVARCHAR?2 (2000) in AL16UTF16. number of characters specified by these
Although the maximum lengths of the NCHAR and limits. This is because UTFS allows
NVARCHAR2 columns are larger in UTFS, the variable-width characters.
actual storage size is still bounq by the byte limits | =~ usually slower to process strings
of 2000 and 4000 bytes, respectively. For example, encoded in UTFS than strin ded i
. gs encoded in
you can store 4000 UTF8 characters in an AL16UTF16 because UTFS8 encoded strings
NVARCHAR2 column if all the characters are single consist of variable-width characters
byte, but only 4000/3 characters if all the ’
characters are three bytes.
Unicode Case Studies
This section describes typical scenarios for storing Unicode characters in an Oracle
database:

Example 6-3, "Unicode Solution with a Unicode Database"

Example 64, "Unicode Solution with Unicode Data Types"

Example 6-5, "Unicode Solution with a Unicode Database and Unicode Data

Types"

Example 6-3 Unicode Solution with a Unicode Database

An American company running a Java application would like to add German and
French support in the next release of the application. They would like to add Japanese
support at a later time. The company currently has the following system configuration:

The existing database has a database character set of US7ASCIL

All character data in the existing database is composed of ASCII characters.

PL/SQL stored procedures are used in the database.

The database is about 300 GB.

There is a nightly downtime of 4 hours.

In this case, a typical solution is to choose UTF8 for the database character set because
of the following reasons:

Supporting Multilingual Databases with Unicode 6-11

Unicode Case Studies

s The database is very large and the scheduled downtime is short. Fast migration of
the database to Unicode is vital. Because the database is in US7ASCII, the easiest
and fastest way of enabling the database to support Unicode is to switch the
database character set to UTF8 by running the CSALTER script. No data
conversion is required because US7ASCII is a subset of UTFS.

= Because most of the code is written in Java and PL/SQL, changing the database
character set to UTF8 is unlikely to break existing code. Unicode support is
automatically enabled in the application.

= Because the application supports French, German, and Japanese, there are few
supplementary characters. Both AL32UTFS8 and UTEFS are suitable.

Example 6-4 Unicode Solution with Unicode Data Types

A European company that runs its applications mainly on Windows platforms wants
to add new Windows applications written in Visual C/C++. The new applications will
use the existing database to support Japanese and Chinese customer names. The
company currently has the following system configuration:

» The existing database has a database character set of WESISO8859P1.

» All character data in the existing database is composed of Western European
characters.

» The database is around 50 GB.

A typical solution is take the following actions:

s Use NCHAR and NVARCHAR2 data types to store Unicode characters
s Keep WESISO8859P1 as the database character set

s Use AL16UTF16 as the national character set

The reasons for this solution are:

= Migrating the existing database to a Unicode database requires data conversion
because the database character set is WESISO8859P1 (a Latin-1 character set),
which is not a subset of UTFS. As a result, there will be some overhead in
converting the data to UTFS.

s The additional languages are supported in new applications only. They do not
depend on the existing applications or schemas. It is simpler to use the Unicode
data type in the new schema and keep the existing schemas unchanged.

= Only customer name columns require Unicode support. Using a single NCHAR
column meets the customer's requirements without migrating the entire database.

= Because the languages to be supported are mostly Asian languages, AL16UTF16
should be used as the national character set so that disk space is used more
efficiently.

» The lengths of the SQL NCHAR data types are defined as number of characters.
This is the same as how they are treated when using wchar_t strings in Windows
C/C++ programs. This reduces programming complexity.

= Existing applications using the existing schemas are unaffected.
Example 6-5 Unicode Solution with a Unicode Database and Unicode Data Types

A Japanese company wants to develop a new Java application. The company expects
that the application will support as many languages as possible in the long run.

6-12 Oracle Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

s Inorder to store documents as is, the company decided to use the BLOB data type
to store documents of multiple languages.

s The company may also want to generate UTF-8 XML documents from the
relational data for business-to-business data exchange.

s The back-end has Windows applications written in C/C++ using ODBC to access
the Oracle database.

In this case, the typical solution is to create a Unicode database using AL32UTFS as the
database character set and use the SQL NCHAR data types to store multilingual data.
The national character set should be set to AL16UTF16. The reasons for this solution
are as follows:

= When documents of different languages are stored in BLOB format, Oracle Text
requires the database character set to be one of the UTF-8 character sets. Because
the applications may retrieve relational data as UTF-8 XML format (where
supplementary characters are stored as four bytes), AL32UTF8 should be used as
the database character set to avoid data conversion when UTF-8 data is retrieved
or inserted.

= Because applications are new and written in both Java and Windows C/C++, the
company should use the SQL NCHAR data type for its relational data. Both Java
and Windows support the UTF-16 character data type, and the length of a
character string is always measured in the number of characters.

= If most of the data is for Asian languages, then AL16UTF16 should be used with
the SQL NCHAR data types because AL16UTF16 offers better storage efficiency.

Designing Database Schemas to Support Multiple Languages

In addition to choosing a Unicode solution, the following issues should be taken into
consideration when the database schema is designed to support multiple languages:

s Specifying Column Lengths for Multilingual Data
= Storing Data in Multiple Languages
s Storing Documents in Multiple Languages in LOB Data Types

» Creating Indexes for Searching Multilingual Document Contents

Specifying Column Lengths for Multilingual Data

When you use NCHAR and NVARCHAR?2 data types for storing multilingual data, the
column size specified for a column is defined in number of characters. (The number of
characters means the number of Unicode code units.) Table 6-6 shows the maximum
size of the NCHAR and NVARCHAR2 data types for the AL1I6UTF16 and UTF8 national
character sets.

Table 66 Maximum Data Type Size

Maximum Column Size of NCHAR Maximum Column Size of

National Character Set Data Type NVARCHAR2 Data Type
AL16UTF16 1000 characters 2000 characters
UTF8 2000 bytes 4000 bytes

When you use CHAR and VARCHAR2 data types for storing multilingual data, the
maximum length specified for each column is, by default, in number of bytes. If the

Supporting Multilingual Databases with Unicode 6-13

Designing Database Schemas to Support Multiple Languages

database needs to support Thai, Arabic, or multibyte languages such as Chinese and
Japanese, then the maximum lengths of the CHAR, VARCHAR, and VARCHAR2 columns
may need to be extended. This is because the number of bytes required to encode these
languages in UTF8 or AL32UTF8 may be significantly larger than the number of bytes
for encoding English and Western European languages. For example, one Thai
character in the Thai character set requires 3 bytes in UTF8 or AL32UTF8. In addition,
the maximum column lengths for CHAR, VARCHAR, and VARCHAR2 data types are 2000
bytes, 4000 bytes, and 4000 bytes respectively. If applications need to store more than
4000 bytes, then they should use the CLOB data type.

Storing Data in Multiple Languages

The Unicode character set includes characters of most written languages around the
world, but it does not contain information about the language to which a given
character belongs. In other words, a character such as & does not contain information
about whether it is a French or German character. In order to provide information in
the language a user desires, data stored in a Unicode database should accompany the
language information to which the data belongs.

There are many ways for a database schema to relate data to a language. The following
sections discuss different approaches:

= Store Language Information with the Data

= Select Translated Data Using Fine-Grained Access Control

Store Language Information with the Data

For data such as product descriptions or product names, you can add a language
column (language_id) of CHAR or VARCHAR2 data type to the product table to
identify the language of the corresponding product information. This enables
applications to retrieve the information in the desired language. The possible values
for this language column are the 3-letter abbreviations of the valid NL.S_LANGUAGE
values of the database.

See Also: Appendix A, "Locale Data" for a list of NL.S_LANGUAGE
values and their abbreviations

You can also create a view to select the data of the current language. For example:

ALTER TABLE scott.product_information ADD (language_id VARCHAR2 (50)):

CREATE OR REPLACE VIEW product AS
SELECT product_id, product_name
FROM product_information
WHERE language_id = SYS_CONTEXT ('USERENV', 'LANG') ;

Select Translated Data Using Fine-Grained Access Control

Fine-grained access control enables you to limit the degree to which a user can view
information in a table or view. Typically, this is done by appending a WHERE clause.
When you add a WHERE clause as a fine-grained access policy to a table or view, Oracle
automatically appends the WHERE clause to any SQL statements on the table at run
time so that only those rows satisfying the WHERE clause can be accessed.

You can use this feature to avoid specifying the desired language of a user in the
WHERE clause in every SELECT statement in your applications. The following WHERE
clause limits the view of a table to the rows corresponding to the desired language of a
user:

6-14 Oracle Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

WHERE language_id = SYS_CONTEXT('userenv', 'LANG')

Specify this WHERE clause as a fine-grained access policy for product_information
as follows:

CREATE FUNCTION funcl (sch VARCHAR2 , obj VARCHAR2)
RETURN VARCHAR2 (100) ;

BEGIN

RETURN 'language_id = SYS_CONTEXT(''userenv'', ''LANG'')';
END

/

DBMS_RLS.ADD_POLICY ('scott', 'product_information', 'lang policy', 'scott',
'funcl', 'select');

Then any SELECT statement on the product_information table automatically
appends the WHERE clause.

See Also: Oracle Database Advanced Application Developer’s Guide
for more information about fine-grained access control

Storing Documents in Multiple Languages in LOB Data Types

You can store documents in multiple languages in CLOB, NCLOB, or BLOB data types
and set up Oracle Text to enable content search for the documents.

Data in CLOB columns is stored in a format that is compatible with UCS-2 when the
database character set is multibyte, such as UTF8 or AL32UTES. This means that the
storage space required for an English document doubles when the data is converted.
Storage for an Asian language document in a CLOB column requires less storage space
than the same document in a LONG column using UTFS, typically around 30% less,
depending on the contents of the document.

Documents in NCLOB format are also stored in a proprietary format that is compatible
with UCS-2 regardless of the database character set or national character set. The
storage space requirement is the same as for CLOB data. Document contents are
converted to UTF-16 when they are inserted into a NCLOB column. If you want to store
multilingual documents in a non-Unicode database, then choose NCLOB. However,
content search on NCLOB is not yet supported.

Documents in BLOB format are stored as they are. No data conversion occurs during
insertion and retrieval. However, SQL string manipulation functions (such as LENGTH
or SUBSTR) and collation functions (such as NLS_SORT and ORDER BY) cannot be
applied to the BLOB data type.

Table 6-7 lists the advantages and disadvantages of the CLOB, NCLOB, and BLOB data
types when storing documents:

Supporting Multilingual Databases with Unicode 6-15

Designing Database Schemas to Support Multiple Languages

Table 6-7 Comparison of LOB Data Types for Document Storage

Data Types Advantages Disadvantages
CLOB = Content search support = Depends on database character set
= String manipulation support = Data conversion is necessary for
insertion

= Cannot store binary documents

NCLOB = Independent of database character set = No content search support
= String manipulation support = Data conversion is necessary for
insertion

= Cannot store binary documents

BLOB = Independent of database character set = No string manipulation support
= Content search support
= No data conversion, data stored as is

= Can store binary documents such as Microsoft
Word or Microsoft Excel

Creating Indexes for Searching Multilingual Document Contents

Oracle Text enables you to build indexes for content search on multilingual documents
stored in CLOB format and BLOB format. It uses a language-specific lexer to parse the
CLOB or BLOB data and produces a list of searchable keywords.

Create a multilexer to search multilingual documents. The multilexer chooses a
language-specific lexer for each row, based on a language column. This section
describes the high level steps to create indexes for documents in multiple languages. It
contains the following topics:

n Creating Multilexers
» Creating Indexes for Documents Stored in the CLOB Data Type
s Creating Indexes for Documents Stored in the BLOB Data Type

See Also: Oracle Text Reference

Creating Multilexers

The first step in creating the multilexer is the creation of language-specific lexer
preferences for each language supported. The following example creates English,
German, and Japanese lexers with PL/SQL procedures:

ctx_ddl.create_preference('english_lexer', 'basic_lexer');
ctx_ddl.set_attribute('english_lexer', 'index_themes', 'yves');
ctx_ddl.create_preference('german_lexer', 'basic_lexer');

ctx_ddl.set_attribute('german_lexer', 'composite', 'german');
ctx_ddl.set_attribute('german_lexer', 'alternate_spelling', 'german');
ctx_ddl.set_attribute('german_lexer', 'mixed_case', 'yes');
ctx_ddl.create_preference('japanese_lexer', 'JAPANESE VGRAM LEXER');

After the language-specific lexer preferences are created, they need to be gathered
together under a single multilexer preference. First, create the multilexer preference,
using the MULTI_LEXER object:

ctx_ddl.create_preference('global_lexer', 'multi_lexer');

Now add the language-specific lexers to the multilexer preference using the add_
sub_lexer call:

6-16 Oracle Database Globalization Support Guide

Designing Database Schemas to Support Multiple Languages

ctx_ddl.add_sub_lexer('global_lexer', 'german', 'german_lexer');
ctx_ddl.add_sub_lexer('global_lexer', 'japanese', 'japanese_lexer');
ctx_ddl.add_sub_lexer('global_lexer', 'default', 'english_lexer');

This nominates the german_lexer preference to handle German documents, the
japanese_lexer preference to handle Japanese documents, and the english_
lexer preference to handle everything else, using DEFAULT as the language.

Creating Indexes for Documents Stored in the CLOB Data Type

The multilexer decides which lexer to use for each row based on a language column in
the table. This is a character column that stores the language of the document in a text
column. Use the Oracle language name to identify the language of a document in this
column. For example, if you use the CLOB data type to store your documents, then add
the language column to the table where the documents are stored:

CREATE TABLE globaldoc

(doc_id NUMBER PRIMARY KEY,
language VARCHAR2 (30),
text CLOB) ;

To create an index for this table, use the multilexer preference and specify the name of
the language column:

CREATE INDEX globalx ON globaldoc (text)
indextype IS ctxsys.context
parameters ('lexer

global_lexer
language
column
language') ;

Creating Indexes for Documents Stored in the BLOB Data Type

In addition to the language column, the character set and format columns must be
added in the table where the documents are stored. The character set column stores
the character set of the documents using the Oracle character set names. The format
column specifies whether a document is a text or binary document. For example, the
CREATE TABLE statement can specify columns called characterset and format:

CREATE TABLE globaldoc (

doc_id NUMBER PRIMARY KEY,
language VARCHAR2 (30),
characterset VARCHAR2 (30)

format VARCHAR2 (10),

text BLOB

)i

You can put word-processing or spreadsheet documents into the table and specify
binary in the format column. For documents in HTML, XML and text format, you
can put them into the table and specify text in the format column.

Because there is a column in which to specify the character set, you can store text
documents in different character sets.

When you create the index, specify the names of the format and character set columns:

CREATE INDEX globalx ON globaldoc (text)
indextype 1s ctxsys.context
parameters ('filter inso_filter
lexer global_lexer
language column language

Supporting Multilingual Databases with Unicode 6-17

Designing Database Schemas to Support Multiple Languages

format column format
charset column characterset');

You can use the charset_filter if all documents are in text format. The charset_
filter converts data from the character set specified in the charset column to the
database character set.

6-18 Oracle Database Globalization Support Guide

7

Programming with Unicode

This chapter describes how to use programming and access products for Oracle
Database with Unicode. This chapter contains the following topics:

s Overview of Programming with Unicode

= SQL and PL/SQL Programming with Unicode

s OCI Programming with Unicode

s Pro*C/C++ Programming with Unicode

s JDBC Programming with Unicode

= ODBC and OLE DB Programming with Unicode
s XML Programming with Unicode

Overview of Programming with Unicode

Oracle offers several database access products for inserting and retrieving Unicode
data. Oracle offers database access products for commonly used programming
environments such as Java and C/C++. Data is transparently converted between the
database and client programs, which ensures that client programs are independent of
the database character set and national character set. In addition, client programs are
sometimes even independent of the character data type, such as NCHAR or CHAR, used
in the database.

To avoid overloading the database server with data conversion operations, Oracle
always tries to move them to the client side database access products. In a few cases,
data must be converted in the database, which affects performance. This chapter
discusses details of the data conversion paths.

Database Access Product Stack and Unicode

Oracle offers a comprehensive set of database access products that enable programs
from different development environments to access Unicode data stored in the
database. These products are listed in Table 7-1.

Programming with Unicode 7-1

Overview of Programming with Unicode

Table 7-1 Oracle Database Access Products

Programming

Environment Oracle Database Access Products
C/C++ Oracle Call Interface (OCI)

Oracle Pro*C/C++

Oracle ODBC driver

Oracle Provider for OLE DB
Oracle Data Provider for NET

Java Oracle JDBC OCI or thin driver
Oracle server-side thin driver
Oracle server-side internal driver

PL/SQL Oracle PL/SQL and SQL

Visual Basic/C# Oracle ODBC driver
Oracle Provider for OLE DB

Figure 7-1 shows how the database access products can access the database.

Figure 7-1 Oracle Database Access Products

- Visual Basic Programs

’ XEScnpt using ADO C/C++ Programs

: ASP Java Programs

- OLE DB

- ODBC "

- Oracle Data Provider Pro*C/C++

for .NET JDBC
Oracle Call Interface (OClI) Thin

Oracle
Net

Oracle Net on TCP/IP

The Oracle Call Interface (OCI) is the lowest level API that the rest of the client-side
database access products use. It provides a flexible way for C/C++ programs to access
Unicode data stored in SQL CHAR and NCHAR data types. Using OCI, you can
programmatically specify the character set (UTF-8, UTF-16, and others) for the data to
be inserted or retrieved. It accesses the database through Oracle Net.

Oracle Pro*C/C++ enables you to embed SQL and PL/SQL in your programs. It uses
OCI's Unicode capabilities to provide UTF-16 and UTF-8 data access for SQL CHAR
and NCHAR data types.

The Oracle ODBC driver enables C/C++, Visual Basic, and VBScript programs
running on Windows platforms to access Unicode data stored in SQL CHAR and
NCHAR data types of the database. It provides UTF-16 data access by implementing the
SQLWCHAR interface specified in the ODBC standard specification.

The Oracle Provider for OLE DB enables C/C++, Visual Basic, and VBScript programs
running on Windows platforms to access Unicode data stored in SQL CHAR and
NCHAR data types. It provides UTF-16 data access through wide string OLE DB data

types.

7-2 Oracle Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

The Oracle Data Provider for .NET enables programs running in any .NET
programming environment on Windows platforms to access Unicode data stored in
SQL CHAR and NCHAR data types. It provides UTF-16 data access through Unicode
data types.

Oracle JDBC drivers are the primary Java programmatic interface for accessing an
Oracle database. Oracle provides the following JDBC drivers:

s The JDBC OCI driver that is used by Java applications and requires the OCI
library

s The JDBC thin driver, which is a pure Java driver that is primarily used by Java
applets and supports the Oracle Net protocol over TCP/IP

» The JDBC server-side thin driver, a pure Java driver used inside Java stored
procedures to connect to another Oracle server

» The JDBC server-side internal driver that is used inside the Oracle server to access
the data in the database

All drivers support Unicode data access to SQL CHAR and NCHAR data types in the
database.

The PL/SQL and SQL engines process PL/SQL programs and SQL statements on
behalf of client-side programs such as OCI and server-side PL/SQL stored procedures.
They allow PL/SQL programs to declare CHAR, VARCHAR2, NCHAR, and NVARCHAR2
variables and to access SQL CHAR and NCHAR data types in the database.

The following sections describe how each of the database access products supports
Unicode data access to an Oracle database and offer examples for using those
products:

= SQL and PL/SQL Programming with Unicode

s OCI Programming with Unicode

s Pro*C/C++ Programming with Unicode

= JDBC Programming with Unicode

= ODBC and OLE DB Programming with Unicode

SQL and PL/SQL Programming with Unicode

SQL is the fundamental language with which all programs and users access data in an
Oracle database either directly or indirectly. PL/SQL is a procedural language that
combines the data manipulating power of SQL with the data processing power of
procedural languages. Both SQL and PL/SQL can be embedded in other
programming languages. This section describes Unicode-related features in SQL and
PL/SQL that you can deploy for multilingual applications.

This section contains the following topics:

s SQL NCHAR Data Types

= Implicit Data Type Conversion Between NCHAR and Other Data Types
= Exception Handling for Data Loss During Data Type Conversion

= Rules for Implicit Data Type Conversion

= SQL Functions for Unicode Data Types

s Other SQL Functions

Programming with Unicode 7-3

SQL and PL/SQL Programming with Unicode

= Unicode String Literals
s Using the UTL_FILE Package with NCHAR Data

See Also:
» Oracle Database SQL Language Reference
» Oracle Database PL/SQL Language Reference

SQL NCHAR Data Types

There are three SQL NCHAR data types:
s The NCHAR Data Type

s The NVARCHAR? Data Type

s The NCLOB Data Type

The NCHAR Data Type

When you define a table column or a PL/SQL variable as the NCHAR data type, the
length is always specified as the number of characters. For example, the following
statement creates a column with a maximum length of 30 characters:

CREATE TABLE tablel (columnl NCHAR(30));

The maximum number of bytes for the column is determined as follows:

maximum number of bytes = (maximum number of characters) x (maximum number of
bytes for each character)

For example, if the national character set is UTF8, then the maximum byte length is 30
characters times 3 bytes for each character, or 90 bytes.

The national character set, which is used for all NCHAR data types, is defined when the
database is created. The national character set can be either UTF8 or AL16UTF16. The
default is AL16UTF16.

The maximum column size allowed is 2000 characters when the national character set
is UTF8 and 1000 when it is AL16UTF16. The actual data is subject to the maximum
byte limit of 2000. The two size constraints must be satisfied at the same time. In
PL/SQL, the maximum length of NCHAR data is 32767 bytes. You can define an NCHAR
variable of up to 32767 characters, but the actual data cannot exceed 32767 bytes. If
you insert a value that is shorter than the column length, then Oracle pads the value
with blanks to whichever length is smaller: maximum character length or maximum
byte length.

Note: UTF8 may affect performance because it is a variable-width
character set. Excessive blank padding of NCHAR fields decreases
performance. Consider using the NVARCHAR data type or changing
to the AL16UTF16 character set for the NCHAR data type.

The NVARCHAR2 Data Type

The NVARCHAR2 data type specifies a variable length character string that uses the
national character set. When you create a table with an NVARCHAR2 column, you
specify the maximum number of characters for the column. Lengths for NVARCHAR2
are always in units of characters, just as for NCHAR. Oracle subsequently stores each

7-4 Oracle Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

value in the column exactly as you specify it, if the value does not exceed the column's
maximum length. Oracle does not pad the string value to the maximum length.

The maximum column size allowed is 4000 characters when the national character set
is UTF8 and 2000 when it is AL16UTF16. The maximum length of an NVARCHAR2
column in bytes is 4000. Both the byte limit and the character limit must be met, so the
maximum number of characters that is actually allowed in an NVARCHAR2 column is
the number of characters that can be written in 4000 bytes.

In PL/SQL, the maximum length for an NVARCHAR?2 variable is 32767 bytes. You can
define NVARCHAR2 variables up to 32767 characters, but the actual data cannot exceed
32767 bytes.

The following statement creates a table with one NVARCHAR2 column whose
maximum length in characters is 2000 and maximum length in bytes is 4000.

CREATE TABLE table2 (column2 NVARCHAR2(2000));

The NCLOB Data Type

NCLOB is a character large object containing Unicode characters, with a maximum size
of 4 gigabytes. Unlike the BLOB data type, the NCLOB data type has full transactional
support so that changes made through SQL, the DBMS_LOB package, or OCI
participate fully in transactions. Manipulations of NCLOB value can be committed and
rolled back. Note, however, that you cannot save an NCLOB locator in a PL/SQL or
OCI variable in one transaction and then use it in another transaction or session.

NCLOB values are stored in the database in a format that is compatible with UCS-2,
regardless of the national character set. Oracle translates the stored Unicode value to
the character set requested on the client or on the server, which can be fixed-width or
variable-width. When you insert data into an NCLOB column using a variable-width
character set, Oracle converts the data into a format that is compatible with UCS-2
before storing it in the database.

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide for more information about the NCLOB data type

Implicit Data Type Conversion Between NCHAR and Other Data Types

Oracle supports implicit conversions between SQL NCHAR data types and other Oracle
data types, such as CHAR, VARCHAR2, NUMBER, DATE, ROWID, and CLOB. Any implicit
conversions for CHAR and VARCHAR?2 data types are also supported for SQL NCHAR
data types. You can use SQL NCHAR data types the same way as SQL CHAR data types.

Type conversions between SQL CHAR data types and SQL NCHAR data types may
involve character set conversion when the database and national character sets are
different. Padding with blanks may occur if the target data is either CHAR or NCHAR.

See Also: Oracle Database SQL Language Reference

Exception Handling for Data Loss During Data Type Conversion

Data loss can occur during data type conversion when character set conversion is
necessary. If a character in the source character set is not defined in the target
character set, then a replacement character is used in its place. For example, if you try
to insert NCHAR data into a regular CHAR column and the character data in NCHAR
(Unicode) form cannot be converted to the database character set, then the character is
replaced by a replacement character defined by the database character set. The NLS_
NCHAR_CONV_EXCP initialization parameter controls the behavior of data loss during

Programming with Unicode 7-5

SQL and PL/SQL Programming with Unicode

character type conversion. When this parameter is set to TRUE, any SQL statements
that result in data loss return an ORA-12713 error and the corresponding operation is
stopped. When this parameter is set to FALSE, data loss is not reported and the
unconvertible characters are replaced with replacement characters. The default value
is TRUE. This parameter works for both implicit and explicit conversion.

In PL/SQL, when data loss occurs during conversion of SQL CHAR and NCHAR data
types, the LOSSY_CHARSET_CONVERSION exception is raised for both implicit and
explicit conversion.

Rules for Implicit Data Type Conversion

In some cases, conversion between data types is possible in only one direction. In
other cases, conversion in both directions is possible. Oracle defines a set of rules for
conversion between data types. Table 7-2 contains the rules for conversion between
data types.

Table 7-2 Rules for Conversion Between Data Types

Statement Rule
INSERT/UPDATE Values are converted to the data type of the target database column.
statement

SELECT INTO statement Data from the database is converted to the data type of the target variable.

Variable assignments Values on the right of the equal sign are converted to the data type of the target variable
on the left of the equal sign.

Parameters in SQL and ~ CHAR, VARCHAR2, NCHAR, and NVARCHAR2 are loaded the same way. An argument with

PL/SQL functions a CHAR, VARCHAR2, NCHAR or NVARCHAR?2 data type is compared to a formal parameter
of any of the CHAR, VARCHAR2, NCHAR or NVARCHAR2 data types. If the argument and
formal parameter data types do not match exactly, then implicit conversions are
introduced when data is copied into the parameter on function entry and copied out to
the argument on function exit.

Concatenation | | If one operand is a SQL CHAR or NCHAR data type and the other operand is a NUMBER or

operation or CONCAT other non-character data type, then the other data type is converted to VARCHAR?2 or

function NVARCHAR2. For concatenation between character data types, see "SQL NCHAR data
types and SQL CHAR data types" on page 7-7.

SQL CHAR or NCHAR Character values are converted to NUMBER data type.

data types and NUMBER

data type

7-6 Oracle Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

Table 7-2 (Cont.) Rules for Conversion Between Data Types

Statement

Rule

SCHJCHAEiorNCHAR
data types and DATE
data type

SQL CHAR or NCHAR
data types and ROWID
data type

SQL NCHAR data types
and SQL CHAR data

types

Character values are converted to DATE data type.

Character values are converted to ROWID data type.

Comparisons between SQL NCHAR data types and SQL CHAR data types are more
complex because they can be encoded in different character sets.

When CHAR and VARCHAR2 values are compared, the CHAR values are converted to
VARCHAR?2 values.

When NCHAR and NVARCHAR2 values are compared, the NCHAR values are converted to
NVARCHAR?2 values.

When there is comparison between SQL NCHAR data types and SQL CHAR data types,
character set conversion occurs if they are encoded in different character sets. The
character set for SQL NCHAR data types is always Unicode and can be either UTFS or
AL16UTF16 encoding, which have the same character repertoires but are different
encodings of the Unicode standard. SQL CHAR data types use the database character set,
which can be any character set that Oracle supports. Unicode is a superset of any
character set supported by Oracle, so SQL CHAR data types can always be converted to
SQL NCHAR data types without data loss.

SQL Functions for Unicode Data Types

SQL NCHAR data types can be converted to and from SQL CHAR data types and other
data types using explicit conversion functions. The examples in this section use the
table created by the following statement:

CREATE TABLE customers
(id NUMBER, name NVARCHAR2 (50), address NVARCHAR2 (200), birthdate DATE);

Example 7-1 Populating the Customers Table Using the TO_NCHAR Function

The TO_NCHAR function converts the data at run time, while the N function converts
the data at compilation time.

INSERT INTO customers VALUES (1000,
TO_NCHAR('John Smith'),N'500 Oracle Parkway', sysdate);

Example 7-2 Selecting from the Customer Table Using the TO_CHAR Function

The following statement converts the values of name from characters in the national
character set to characters in the database character set before selecting them according
to the LIKE clause:

SELECT name FROM customers WHERE TO_CHAR (name) LIKE '%Sm%';

You should see the following output:

John Smith

Example 7-3 Selecting from the Customer Table Using the TO_DATE Function

Using the N function shows that either NCHAR or CHAR data can be passed as
parameters for the TO_DATE function. The data types can mixed because they are
converted at run time.

Programming with Unicode 7-7

SQL and PL/SQL Programming with Unicode

DECLARE

ndatestring NVARCHAR2 (20) := N'12-SEP-1975';

ndstr NVARCHAR2 (50) ;

BEGIN

SELECT name INTO ndstr FROM customers

WHERE (birthdate)> TO_DATE (ndatestring, 'DD-MON-YYYY', N'NLS_DATE_LANGUAGE =
AMERICAN') ;

END;

As demonstrated in Example 7-3, SQL NCHAR data can be passed to explicit
conversion functions. SQL CHAR and NCHAR data can be mixed together when using
multiple string parameters.

See Also: Oracle Database SQL Language Reference for more
information about explicit conversion functions for SQL NCHAR
data types

Other SQL Functions

Most SQL functions can take arguments of SQL NCHAR data types as well as mixed
character data types. The return data type is based on the type of the first argument. If
a non-string data type like NUMBER or DATE is passed to these functions, then it is
converted to VARCHAR2. The following examples use the customer table created in
"SQL Functions for Unicode Data Types" on page 7-7.

Example 7-4 INSTR Function

In this example, the string literal ' Sm' is converted to NVARCHAR2 and then scanned
by INSTR, to detect the position of the first occurrence of this string in name.

SELECT INSTR(name, N'Sm', 1, 1) FROM customers;

Example 7-5 CONCAT Function
SELECT CONCAT (name, id) FROM customers;

idis converted to NVARCHAR?2 and then concatenated with name.

Example 7-6 RPAD Function
SELECT RPAD (name,100,' ') FROM customers;

The following output results:

RPAD (NAME, 100, '")

John Smith

The space character ' ' is converted to the corresponding character in the NCHAR
character set and then padded to the right of name until the total display length
reaches 100.

See Also: Oracle Database SQL Language Reference

Unicode String Literals
You can input Unicode string literals in SQL and PL/SQL as follows:

= Put a prefix N before a string literal that is enclosed with single quote marks. This
explicitly indicates that the following string literal is an NCHAR string literal. For

7-8 Oracle Database Globalization Support Guide

SQL and PL/SQL Programming with Unicode

example, N'résumé ' is an NCHAR string literal. For information about limitations
of this method, see "NCHAR String Literal Replacement" on page 7-9.

Use the NCHR (n) SQL function, which returns a unit of character code in the
national character set, which is AL16UTF16 or UTF8. The result of concatenating
several NCHR (n) functions is NVARCHAR2 data. In this way, you can bypass the
client and server character set conversions and create an NVARCHAR2 string
directly. For example, NCHR (32) represents a blank character.

Because NCHR (n) is associated with the national character set, portability of the
resulting value is limited to applications that run with the same national character
set. If this is a concern, then use the UNISTR function to remove portability
limitations.

Use the UNISTR('string ') SQL function. UNISTR('string ') converts a string to
the national character set. To ensure portability and to preserve data, include only
ASCII characters and Unicode encoding in the following form: \xxxx, where
xxxx is the hexadecimal value of a character code value in UTF-16 encoding
format. For example, UNISTR ('G\0061ry"') represents 'Gary'. The ASCII
characters are converted to the database character set and then to the national
character set. The Unicode encoding is converted directly to the national character
set.

The last two methods can be used to encode any Unicode string literals.

NCHAR String Literal Replacement

This section provides information on how to avoid data loss when performing NCHAR
string literal replacement.

Being part of a SQL or PL/SQL statement, the text of any literal, with or without the
prefix N, is encoded in the same character set as the rest of the statement. On the client
side, the statement is in the client character set, which is determined by the client
character set defined in NLS_LANG, or specified in the OCIEnvNlsCreate () call, or
predefined as UTF-16 in JDBC. On the server side, the statement is in the database
character set.

When the SQL or PL/SQL statement is transferred from client to the database
server, its character set is converted accordingly. It is important to note that if the
database character set does not contain all characters used in the text literals, then
the data is lost in this conversion. This problem affects NCHAR string literals more
than the CHAR text literals. This is because the N'' literals are designed to be
independent of the database charactser set, and should be able to provide any data
that the client character set supports.

To avoid data loss in conversion to an incompatible database character set, you
can activate the NCHAR literal replacement functionality. The functionality
transparently replaces the N' literals on the client side with an internal format. The
database server then decodes this to Unicode when the statement is executed.

The sections "Handling SOQL NCHAR String Literals in OCI" on page 7-16 and
"Using SQL NCHAR String Literals in JDBC" on page 7-23 show how to switch on
the replacement functionality in OCI and JDBC, respectively. Because many
applications, for example, SQL*Plus, use OCI to connect to a database, and they do
not control NCHAR literal replacement explicitly, you can set the client
environment variable ORA_NCHAR_LITERAL_REPLACE to TRUE to control the
functionality for them. By default, the functionality is switched off to maintain
backward compatibility.

Programming with Unicode 7-9

OCI Programming with Unicode

Using the UTL_FILE Package with NCHAR Data

The UTL_FILE package handles Unicode national character set data of the
NVARCHAR2 data type. NCHAR and NCLOB are supported through implicit conversion.
The functions and procedures include the following:

FOPEN_NCHAR

This function opens a file in national character set mode for input or output, with
the maximum line size specified. Even though the contents of an NVARCHAR2
buffer may be AL16UTF16 or UTF8 (depending on the national character set of the
database), the contents of the file are always read and written in UTF8. See
"Support for Unicode in Oracle Database" on page 6-4 for more information. UTL_
FILE converts between UTF8 and AL16UTF16 as necessary.

GET_LINE_NCHAR

This procedure reads text from the open file identified by the file handle and
places the text in the output buffer parameter. The file must be opened in national
character set mode, and must be encoded in the UTFS8 character set. The expected
buffer data type is NVARCHAR?2. If a variable of another data type, such as NCHAR,
NCLOB, or VARCHAR?2 is specified, PL/SQL performs standard implicit conversion
from NVARCHAR?2 after the text is read.

PUT_NCHAR

This procedure writes the text string stored in the buffer parameter to the open file
identified by the file handle. The file must be opened in the national character set
mode. The text string will be written in the UTF8 character set. The expected
buffer data type is NVARCHAR2. If a variable of another data type is specified,
PL/SQL performs implicit conversion to NVARCHAR2 before writing the text.

PUT_LINE_NCHAR

This procedure is equivalent to PUT_NCHAR, except that the line separator is
appended to the written text.

PUTF_NCHAR

This procedure is a formatted version of a PUT_NCHAR procedure. It accepts a
format string with formatting elements \n and %s, and up to five arguments to be
substituted for consecutive instances of %s in the format string. The expected data
type of the format string and the arguments is NVARCHAR?2. If variables of another
data type are specified, PL/SQL performs implicit conversion to NVARCHAR2
before formatting the text. Formatted text is written in the UTF8 character set to
the file identified by the file handle. The file must be opened in the national
character set mode.

The above functions and procedures process text files encoded in the UTF8 character
set, that is, in the Unicode CESU-8 encoding. See "Universal Character Sets" on

page A-15 for more information about CESU-8. The functions and procedures convert
between UTF8 and the national character set of the database, which can be UTF8 or
AL16UTF16, as needed.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the UTL_FILE package

OCI Programming with Unicode

OCl is the lowest-level API for accessing a database, so it offers the best possible
performance. When using Unicode with OCI, consider these topics:

7-10 Oracle Database Globalization Support Guide

OCI Programming with Unicode

s OCIEnvNIsCreate() Function for Unicode Programming

s OCI Unicode Code Conversion

s Setting UTF-8 to the NLS_LANG Character Set in OCI

= Binding and Defining SQL CHAR Data Types in OCI

= Binding and Defining SOL NCHAR Data Types in OCI

s Binding and Defining CLOB and NCLOB Unicode Data in OCI

See Also: Chapter 10, "OCI Programming in a Global
Environment"

OCIEnvNIsCreate() Function for Unicode Programming

The OCIEnvNlsCreate () function is used to specify a SQL CHAR character set and a
SQL NCHAR character set when the OCI environment is created. It is an enhanced
version of the OCIEnvCreate () function and has extended arguments for two
character set IDs. The OCI_UTF16ID UTF-16 character set ID replaces the Unicode
mode introduced in Oracle9i release 1 (9.0.1). For example:

OCIEnv *envhp;
status = OCIEnvNlsCreate((OCIEnv **)&envhp,
(ub4)0,

ub2)0CI_UTF16ID, /* Metadata and SQL CHAR character set */
ub2)0CI_UTF16ID /* SQL NCHAR character set */);

The Unicode mode, in which the OCI_UTF16 flag is used with the OCIEnvCreate ()
function, is deprecated.

When OCI_UTF16ID is specified for both SQL CHAR and SQL NCHAR character sets, all
metadata and bound and defined data are encoded in UTF-16. Metadata includes SQL
statements, user names, error messages, and column names. Thus, all inherited
operations are independent of the NL.S_LANG setting, and all metatext data parameters
(text*) are assumed to be Unicode text data types (utext*) in UTF-16 encoding.

To prepare the SQL statement when the OCIEnv () function is initialized with the
OCI_UTF16ID character set ID, call the OCIStmtPrepare () function with a
(utext*) string. The following example runs on the Windows platform only. You
may need to change wchar_t data types for other platforms.

const wchar_t sqglstr[] = L"SELECT * FROM ENAME=:ename";

OCIStmt* stmthp;

sts = OCIHandleAlloc(envh, (void **)&stmthp, OCI_HTYPE_STMT, O,
NULL) ;

status = OCIStmtPrepare (stmthp, errhp, (const text*)sqglstr,
wcslen(sglstr), OCI_NTV_SYNTAX, OCI_DEFAULT) ;

To bind and define data, you do not have to set the OCI_ATTR_CHARSET_ID attribute
because the OCIEnv () function has already been initialized with UTF-16 character set
IDs. The bind variable names also must be UTF-16 strings.

/* Inserting Unicode data */

Programming with Unicode 7-11

OCI Programming with Unicode

0CIBindByName (stmthpl, &bndlp, errhp, (const text*)L":ename",
(sb4)wcslen(L":ename"),

(void *) ename, sizeof (ename), SQLT_STR, (void
*) &insname_ind,

(ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4d *)O,
OCI_DEFAULT) ;
OCIAttrSet((void *) bndlp, (ub4) OCI_HTYPE_BIND, (void *)
&ename_col_len,

(ub4) 0, (ub4)OCI_ATTR_MAXDATA SIZE, errhp);

/* Retrieving Unicode data */

OCIDefineByPos (stmthp2, &dfnlp, errhp, (ub4)l, (void *)ename,
(sbd)sizeof (ename), SQLT STR, (void *)0, (ub2 *)0,

(ub2*)0, (ub4)OCI_DEFAULT);

The OCIExecute () function performs the operation.

See Also: "Specifying Character Sets in OCI" on page 10-2

OCI Unicode Code Conversion

Unicode character set conversions take place between an OCI client and the database
server if the client and server character sets are different. The conversion occurs on
either the client or the server depending on the circumstances, but usually on the client
side.

Data Integrity

You can lose data during conversion if you call an OCI API inappropriately. If the
server and client character sets are different, then you can lose data when the
destination character set is a smaller set than the source character set. You can avoid
this potential problem if both character sets are Unicode character sets (for example,
UTF8 and AL16UTF16).

When you bind or define SQL NCHAR data types, you should set the OCI_ATTR_
CHARSET_FORM attribute to SQLCS_NCHAR. Otherwise, you can lose data because the
data is converted to the database character set before converting to or from the
national character set. This occurs only if the database character set is not Unicode.

OCI Performance Implications When Using Unicode

Redundant data conversions can cause performance degradation in your OCI
applications. These conversions occur in two cases:

= When you bind or define SQL CHAR data types and set the OCI_ATTR_CHARSET_
FORM attribute to SQLCS_NCHAR, data conversions take place from client character
set to the national database character set, and from the national character set to the
database character set. No data loss is expected, but two conversions happen, even
though it requires only one.

= When you bind or define SQL NCHAR data types and do not set OCI_ATTR_
CHARSET_FORM, data conversions take place from client character set to the
database character set, and from the database character set to the national
database character set. In the worst case, data loss can occur if the database
character set is smaller than the client's.

To avoid performance problems, you should always set OCI_ATTR_CHARSET_FORM
correctly, based on the data type of the target columns. If you do not know the target
data type, then you should set the OCI_ATTR_CHARSET_FORM attribute to SQLCS_
NCHAR when binding and defining.

7-12 Oracle Database Globalization Support Guide

OCI Programming with Unicode

Table 7-3 contains information about OCI character set conversions.

Table 7-3 OCI Character Set Conversions

OCI_ATTR_ Data Types of the
Data Types for CHARSET_ Target Column in
OCI Client Buffer FORM the Database Conversion Between Comments
utext SQLCS_ CHAR, UTF-16 and database No unexpected data loss
IMPLICIT VARCHAR?2, character set in OCI
CLOB
utext SQLCS_ NCHAR, UTEF-16 and national No unexpected data loss
NCHAR NVARCHAR2, character set in OCI
NCLOB
utext SQLCS_ CHAR, UTF-16 and national No unexpected data loss,
NCHAR VARCHAR2, character set in OCI but may degrade
CLOB National character set and performance because the
i conversion goes through the
database character set in .
national character set
database server
utext SQLCS_ NCHAR, UTF-16 and database Data loss may occur if the
IMPLICIT NVARCHARZ, character set in OCI database character set is not
NCLOB Database character set and Unicode
national character set in
database server
text SQLCS_ CHAR, NLS_LANG character set No unexpected data loss
IMPLICIT VARCHAR2, and database character set
CLOB in OCI
text SQLCS_ NCHAR, NLS_LANG character set No unexpected data loss
NCHAR NVARCHAR2,NCLOB and national character set
in OCI
text SQLCS_ CHAR, NLS_LANG character set No unexpected data loss,
NCHAR VARCHAR2, and national character set but may degrade
CLOB in OCI performance because the
National character setand =~ SO'L ¢ o107 50€8 through the
: national character set
database character set in
database server
text SQLCS_ NCHAR, NLS_LANG character set Data loss may occur because
IMPLICIT NVARCHAR2,NCLOB and database character set the conversion goes through

in OCI

Database character set and
national character set in
database server

the database character set

OCI Unicode Data Expansion

Data conversion can result in data expansion, which can cause a buffer to overflow.
For binding operations, you must set the OCI_ATTR_MAXDATA_SIZE attribute to a
large enough size to hold the expanded data on the server. If this is difficult to do, then
you must consider changing the table schema. For defining operations, client
applications must allocate enough buffer space for the expanded data. The size of the
buffer should be the maximum length of the expanded data. You can estimate the
maximum buffer length with the following calculation:

1. Get the column data byte size.

2. Multiply it by the maximum number of bytes for each character in the client
character set.

Programming with Unicode 7-13

OCI Programming with Unicode

This method is the simplest and quickest way, but it may not be accurate and can
waste memory. It is applicable to any character set combination. For example, for
UTF-16 data binding and defining, the following example calculates the client buffer:

ub2 csid = OCI_UTF161ID;
oratext *selstmt = "SELECT ename FROM emp";
counter = 1;

OCIStmtPrepare(stmthp, errhp, selstmt, (ub4d)strlen((char*)selstmt),
OCI_NTV_SYNTAX, OCI_DEFAULT) ;
OCIStmtExecute (svchp, stmthp, errhp, (ub4)0, (ub4)O0,
(CONST OCISnapshot*)0, (OCISnapshot*)O0,
OCI_DESCRIBE_ONLY) ;
OCIParamGet (stmthp, OCI_HTYPE_STMT, errhp, &myparam, (ub4)counter);
OCIAttrGet ((void*)myparam, (ub4)OCI_DTYPE_PARAM, (void*)&col_width,
(ub4*)0, (ub4)OCI_ATTR_DATA_SIZE, errhp);

maxenamelen = (col_width + 1) * sizeof (utext);
cbuf = (utext*)malloc (maxenamelen) ;

OCIDefineByPos (stmthp, &dfnp, errhp, (ub4)l, (void *)cbuf,
(sb4)maxenamelen, SQLT STR, (void *)0, (ub2 *)O0,
(ub2*)0, (ub4)OCI_DEFAULT) ;
OCIAttrSet((void *) dfnp, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
(ub4) 0, (ub4)OCI_ATTR_CHARSET ID, errhp);
OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);

Setting UTF-8 to the NLS_LANG Character Set in OCI

For OCI client applications that support Unicode UTF-8 encoding, use AL32UTF8 to
specify the NLS_LANG character set, unless the database character set is UTF8. Use
UTFS if the database character set is UTFS.

Do not set NL.S_LANG to AL16UTF16, because AL16UTF16 is the national character set
for the server. If you need to use UTF-16, then you should specify the client character
set to OCI_UTF161ID, using the OCIAttrSet () function when binding or defining
data.

Binding and Defining SQL CHAR Data Types in OCI

To specify a Unicode character set for binding and defining data with SQL CHAR data
types, you may need to call the OCIAttrSet () function to set the appropriate
character set ID after OCIBind () or OCIDefine () APIs. There are two typical cases:

s CallocIBind() or OCIDefine () followed by OCIAttrSet() to specify UTF-16
Unicode character set encoding. For example:

ub2 csid = OCI_UTF16ID;
utext ename[100]; /* enough buffer for ENAME */

/* Inserting Unicode data */

OCIBindByName (stmthpl, &bndlp, errhp, (oratext*)":ENAME",
(sbd)strlen((char *)":ENAME"), (void *) ename, sizeof (ename),
SQLT_STR, (void *)&insname_ind, (ub2 *) 0, (ub2 *) 0, (ub4) 0,
(ub4 *)0, OCI_DEFAULT);

OCIAttrSet((void *) bndlp, (ub4) OCI_HTYPE_BIND, (void *) &csid,

(ub4) 0, (ub4)OCI_ATTR_CHARSET_ ID, errhp);
OCIAttrSet((void *) bndlp, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,

7-14 Oracle Database Globalization Support Guide

OCI Programming with Unicode

(ub4) 0, (ub4)OCI_ATTR _MAXDATA_SIZE, errhp);

/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfnlp, errhp, (ub4)l, (void *)ename,
(sb4)sizeof (ename), SQLT_STR, (void *)0, (ub2 *)O0,
(ub2*)0, (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfnlp, (ub4) OCI_HTYPE_DEFINE, (void *) &csid,
(ub4) 0, (ub4)OCI_ATTR_CHARSET ID, errhp);

If bound bulffers are of the utext data type, then you should add a cast (text¥)
when OCIBind () or OCIDefine () is called. The value of the OCI_ATTR
MAXDATA_SIZE attribute is usually determined by the column size of the server
character set because this size is only used to allocate temporary buffer space for
conversion on the server when you perform binding operations.

s CallocIBind() or OCIDefine () with the NLS_LANG character set specified as
UTEF8 or AL32UTF8.

UTEFS8 or AL32UTES can be set in the NL.S_LANG environment variable. You call
OCIBind () and OCIDefine () in exactly the same manner as when you are not
using Unicode. Set the NL.S_LANG environment variable to UTE8 or AL32UTES8
and run the following OCI program:

oratext ename[100]; /* enough buffer size for ENAME */

/* Inserting Unicode data */
0CIBindByName (stmthpl, &bndlp, errhp, (oratext*)":ENAME",
(sbd)strlen((char *)":ENAME"), (void *) ename, sizeof (ename),
SQLT_STR, (void *)&insname_ind, (ub2 *) 0, (ub2 *) O,
(ub4) 0, (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((void *) bndlp, (ub4) OCI_HTYPE BIND, (void *) &ename_col_len,
(ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);

/* Retrieving Unicode data */

OCIDefineByPos (stmthp2, &dfnlp, errhp, (ub4)l, (void *)ename,
(sb4)sizeof (ename), SQLT_STR, (void *)0, (ub2 *)0, (ub2*)0,
(ub4)O0CI_DEFAULT) ;

Binding and Defining SQL NCHAR Data Types in OCI

Oracle recommends that you access SQL NCHAR data types using UTF-16 binding or
defining when using OCI. Beginning with Oracle9i, SQL NCHAR data types are
Unicode data types with an encoding of either UTF8 or AL16UTF16. To access data in
SQL NCHAR data types, set the OCI_ATTR_CHARSET_FORM attribute to SQLCS_NCHAR
between binding or defining and execution so that it performs an appropriate data
conversion without data loss. The length of data in SQL NCHAR data types is always in
the number of Unicode code units.

The following program is a typical example of inserting and fetching data against an
NCHAR data column:

ub2 csid = OCI_UTF16ID;
ubl cform = SQLCS_NCHAR;
utext ename[100]; /* enough buffer for ENAME */

/* Inserting Unicode data */

Programming with Unicode 7-15

OCI Programming with Unicode

0CIBindByName (stmthpl, &bndlp, errhp, (oratext*)":ENAME",
(sbd)strlen((char *)":ENAME"), (void *) ename,
sizeof (ename), SQLT_STR, (void *)&insname_ind, (ub2 *) 0,
(ub2 *) 0, (ub4) 0, (ub4 *)0, OCI_DEFAULT);
OCIAttrSet((void *) bndlp, (ub4) OCI_HTYPE_BIND, (void *) &cform, (ub4) O,
(ub4)OCI_ATTR_CHARSET FORM, errhp);
OCIAttrSet((void *) bndlp, (ub4) OCI_HTYPE_BIND, (void *) &csid, (ub4) 0,
(ub4)OCI_ATTR_CHARSET ID, errhp);
OCIAttrSet((void *) bndlp, (ub4) OCI_HTYPE_BIND, (void *) &ename_col_len,
(ub4) 0, (ub4)OCI_ATTR_MAXDATA_SIZE, errhp);

/* Retrieving Unicode data */
OCIDefineByPos (stmthp2, &dfnlp, errhp, (ub4)l, (void *)ename,
(sb4)sizeof (ename), SQLT_STR, (void *)0, (ub2 *)0, (ub2*)O0,
(ub4)O0CI_DEFAULT) ;
OCIAttrSet((void *) dfnlp, (ub4) OCI_HTYPE_DEFINE, (void *) &csid, (ub4) 0,
(ub4)OCI_ATTR_CHARSET ID, errhp);
OCIAttrSet((void *) dfnlp, (ub4) OCI_HTYPE_DEFINE, (void *) &cform, (ub4) 0,
(ub4)OCI_ATTR_CHARSET FORM, errhp);

Handling SQL NCHAR String Literals in OCI

By default, the NCHAR literal replacement is not performed in OCI. (Refer to "NCHAR
String Literal Replacement" on page 7-9.)

You can switch it on by setting the environment variable ORA_NCHAR_LITERAL_
REPLACE to TRUE. You can also achieve this behavior programmatically by using the
OCI_NCHAR_LITERAIL_REPLACE_ON and OCI_NCHAR_LITERAI_REPLACE_OFF
modes in OCIEnvCreate () and OCIEnvNlsCreate (). So, for example,
OCIEnvCreate (OCI_NCHAR_LITERAL_REPLACE_ON) turns on NCHAR literal

replacement, while OCIEnvCreate (OCI_NCHAR_LITERAL_REPLACE_OFF) turns it
off.

As an example, consider the following statement:

int main(argc, argv)
{
OCIEnv *envhp;

if (OCIEnvCreate((OCIEnv **) &envhp,
(ub4) OCT_THREADED | OCT_NCHAR_LITERAL_REPLACE_ON,
(dvoid *)0, (dvoid * (*) (dvoid *, size_t)) O,
(dvoid * (*) (dvoid *, dvoid *, size_t))O0,
(void (*) (dvoid *, dvoid *)) 0,
(size_t) 0, (dvoid **) 0))
{

printf ("FAILED: OCIEnvCreate()\n";

return 1;

}
}

Note that, when the NCHAR literal replacement is turned on, OCIStmtPrepare and
OCIStmtPrepare? transforms N' literals with U' literals in the SQL text and store
the resulting SQL text in the statement handle. Thus, if the application uses 0CI_
ATTR_STATEMENT to retrieve the SQL text from the OCI statement handle, the SQL
text returns U instead of N' as specified in the original text.

7-16 Oracle Database Globalization Support Guide

Pro*C/C++ Programming with Unicode

See Also: Oracle Database SQL Language Reference for information
regarding environment variables

Binding and Defining CLOB and NCLOB Unicode Data in OCI

In order to write (bind) and read (define) UTF-16 data for CLOB or NCLOB columns, the
UTF-16 character set ID must be specified as OCILobWrite () and OCILobRead ().
When you write UTF-16 data into a CLOB column, call OCILobWrite () as follows:

ub2 csid = OCI_UTF161ID;

err = OCILobWrite (ctx->svchp, ctx->errhp, lobp, &amtp, offset, (void *) buf,
(ub4) BUFSIZE, OCI_ONE_PIECE, (void *)O0,
(sb4d (*)()) 0, (ub2) csid, (ubl) SQLCS_IMPLICIT);

The amtp parameter is the data length in number of Unicode code units. The offset
parameter indicates the offset of data from the beginning of the data column. The
csid parameter must be set for UTF-16 data.

To read UTF-16 data from CLOB columns, call OCILobRead () as follows:

ub2 csid = OCI_UTF161ID;

err = OCILobRead (ctx->svchp, ctx->errhp, lobp, &amtp, offset, (void *) buf,
(ub4)BUFSIZE , (void *) 0, (sb4 (*)()) 0, (ub2)csid,
(ubl) SQLCS_IMPLICIT);

The data length is always represented in the number of Unicode code units. Note one
Unicode supplementary character is counted as two code units, because the encoding
is UTF-16. After binding or defining a LOB column, you can measure the data length
stored in the LOB column using OCILobGetLength (). The returning value is the
data length in the number of code units if you bind or define as UTF-16.

err = OCILobGetLength (ctx->svchp, ctx->errhp, lobp, &lenp);

If you are using an NCLOB, then you must set OCI_ATTR_CHARSET_FORM to SQLCS_
NCHAR.

Pro*C/C++ Programming with Unicode

Pro*C/C++ provides the following ways to insert or retrieve Unicode data into or
from the database:

s Using the VARCHAR Pro*C/C++ data type or the native C/C++ text data type, a
program can access Unicode data stored in SQL CHAR data types of a UTFS8 or
AL32UTFS8 database. Alternatively, a program could use the C/C++ native text
type.

s Using the UVARCHAR Pro*C/C++ data type or the native C/C++ utext data type,
a program can access Unicode data stored in NCHAR data types of a database.

= Using the NVARCHAR Pro*C/C++ data type, a program can access Unicode data
stored in NCHAR data types. The difference between UVARCHAR and NVARCHAR in
a Pro*C/C++ program is that the data for the UVARCHAR data type is stored in a
utext buffer while the data for the NVARCHAR data type is stored in a text data

type.

Programming with Unicode 7-17

Pro*C/C++ Programming with Unicode

Pro*C/C++ does not use the Unicode OCI API for SQL text. As a result, embedded
SQL text must be encoded in the character set specified in the NLS_LANG environment
variable.

This section contains the following topics:

s Pro*C/C++ Data Conversion in Unicode

= Using the VARCHAR Data Type in Pro*C/C++

s Using the NVARCHAR Data Type in Pro*C/C++
s Using the UVARCHAR Data Type in Pro*C/C++

Pro*C/C++ Data Conversion in Unicode

Data conversion occurs in the OCI layer, but it is the Pro*C/C++ preprocessor that
instructs OCI which conversion path should be taken based on the data types used in a
Pro*C/C++ program. Table 7—4 illustrates the conversion paths:

Table 7-4 Pro*C/C++ Bind and Define Data Conversion

Pro*C/C++ Data Type SQL Data Type Conversion Path

VARCHAR or text CHAR NLS_LANG character set to and from the database character
set happens in OCI

VARCHAR or text NCHAR NLS_LANG character set to and from database character set
happens in OCI

Database character set to and from national character set
happens in database server

NVARCHAR NCHAR NLS_LANG character set to and from national character set
happens in OCI

NVARCHAR CHAR NLS_LANG character set to and from national character set
happens in OCI

National character set to and from database character set in
database server

UVARCHAR or utext NCHAR UTF-16 to and from the national character set happens in
OCI
UVARCHAR or utext CHAR UTEF-16 to and from national character set happens in OCI

National character set to database character set happens in
database server

Using the VARCHAR Data Type in Pro*C/C++

The Pro*C/C++ VARCHAR data type is preprocessed to a struct with a 1ength field
and text buffer field. The following example uses the C/C++ text native data type
and the VARCHAR Pro*C/C++ data types to bind and define table columns.

#include <sglca.h>

main()
{
/* Change to STRING datatype: */
EXEC ORACLE OPTION (CHAR_MAP=STRING) ;
text ename[20] ; /* unsigned short type */
varchar address[50] ; /* Pro*C/C++ varchar type */

EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;
/* ename 1is NULL-terminated */

7-18 Oracle Database Globalization Support Guide

Pro*C/C++ Programming with Unicode

printf (L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len, address.arr);
}

When you use the VARCHAR data type or native text data type in a Pro*C/C++
program, the preprocessor assumes that the program intends to access columns of
SQL CHAR data types instead of SQL NCHAR data types in the database. The
preprocessor generates C/C++ code to reflect this fact by doing a bind or define using
the SQL.CS_IMPLICIT value for the OCI_ATTR_CHARSET_FORM attribute. As a result,
if a bind or define variable is bound to a column of SQL NCHAR data types in the
database, then implicit conversion occurs in the database server to convert the data
from the database character set to the national database character set and vice versa.
During the conversion, data loss occurs when the database character set is a smaller
set than the national character set.

Using the NVARCHAR Data Type in Pro*C/C++

The Pro*C/C++ NVARCHAR data type is similar to the Pro*C/C++ VARCHAR data type.
It should be used to access SQL NCHAR data types in the database. It tells Pro*C/C++
preprocessor to bind or define a text buffer to the column of SQL NCHAR data types.
The preprocessor specifies the SQLCS_NCHAR value for the OCI_ATTR_CHARSET _
FORM attribute of the bind or define variable. As a result, no implicit conversion occurs
in the database.

If the NVARCHAR buffer is bound against columns of SQL CHAR data types, then the
data in the NVARCHAR buffer (encoded in the NL.S_TLANG character set) is converted to
or from the national character set in OCI, and the data is then converted to the
database character set in the database server. Data can be lost when the NLS_LANG
character set is a larger set than the database character set.

Using the UVARCHAR Data Type in Pro*C/C++

The UVARCHAR data type is preprocessed to a struct with a 1ength field and utext
buffer field. The following example code contains two host variables, ename and
address. The ename host variable is declared as a utext buffer containing 20
Unicode characters. The address host variable is declared as a uvarchar buffer
containing 50 Unicode characters. The 1en and arr fields are accessible as fields of a
struct.

#include <sqglca.h>
#include <sglucs2.h>

main()
{
/* Change to STRING datatype: */
EXEC ORACLE OPTION (CHAR_MAP=STRING) ;
utext ename[20] ; /* unsigned short type */
uvarchar address[50] ; /* Pro*C/C++ uvarchar type */

EXEC SQL SELECT ename, address INTO :ename, :address FROM emp;
/* ename 1is NULL-terminated */
wprintf (L"ENAME = %s, ADDRESS = %.*s\n", ename, address.len,
address.arr) ;

}

Programming with Unicode 7-19

JDBC Programming with Unicode

When you use the UVARCHAR data type or native utext data type in Pro*C/C++
programs, the preprocessor assumes that the program intends to access SQL NCHAR
data types. The preprocessor generates C/C++ code by binding or defining using the
SQLCS_NCHAR value for OCI_ATTR_CHARSET FORM attribute. As a result, if a bind or
define variable is bound to a column of a SQL NCHAR data type, then an implicit
conversion of the data from the national character set occurs in the database server.
However, there is no data lost in this scenario because the national character set is
always a larger set than the database character set.

JDBC Programming with Unicode

Oracle provides the following JDBC drivers for Java programs to access character data
in an Oracle database:

s The JDBC OCI driver

s The JDBC thin driver

s The JDBC server-side internal driver
s The JDBC server-side thin driver

Java programs can insert or retrieve character data to and from columns of SQL CHAR
and NCHAR data types. Specifically, JDBC enables Java programs to bind or define Java
strings to SQL CHAR and NCHAR data types. Because Java's string data type is
UTEF-16 encoded, data retrieved from or inserted into the database must be converted
from UTF-16 to the database character set or the national character set and vice versa.
JDBC also enables you to specify the PL/SQL and SQL statements in Java strings so
that any non-ASCII schema object names and string literals can be used.

At database connection time, JDBC sets the server NLS_LANGUAGE and NLS_
TERRITORY parameters to correspond to the locale of the Java VM that runs the JDBC
driver. This operation ensures that the server and the Java client communicate in the
same language. As a result, Oracle error messages returned from the server are in the
same language as the client locale.

This section contains the following topics:

» Binding and Defining Java Strings to SQL CHAR Data Types

» Binding and Defining Java Strings to SQL NCHAR Data Types

= Using the SQL NCHAR Data Types Without Changing the Code
s Using SQL NCHAR String Literals in JDBC

s Data Conversion in JDBC

= Using oracle.sql. CHAR in Oracle Object Types

= Restrictions on Accessing SQL CHAR Data with JDBC

Binding and Defining Java Strings to SQL CHAR Data Types

Oracle JDBC drivers allow you to access SQL CHAR data types in the database using
Java string bind or define variables. The following code illustrates how to bind a Java
string to a CHAR column.

int employee_id = 12345;

String last_name = "Joe";

PreparedStatement pstmt = conn.prepareStatement ("INSERT INTO" +
"employees (last_name, employee_id) VALUES (?, ?)");

pstmt.setString(l, last_name);

7-20 Oracle Database Globalization Support Guide

JDBC Programming with Unicode

pstmt.setInt (2, employee_id);

pstmt.execute() ; /* execute to insert into first row */
employee_id += 1; /* next employee number */
last_name = "\uFF2A\uFF4F\uFF45"; /* Unicode characters in name */

pstmt.setString(1l, last_name);
pstmt.setInt (2, employee_id);
pstmt.execute() ; /* execute to insert into second row */

You can define the target SQL columns by specifying their data types and lengths.
When you define a SQL CHAR column with the data type and the length, JDBC uses
this information to optimize the performance of fetching SQL CHAR data from the
column. The following is an example of defining a SQL CHAR column.

OraclePreparedStatement pstmt = (OraclePreparedStatement)
conn.prepareStatement ("SELECT ename, empno from emp");

pstmt.defineColumnType (1, Types.VARCHAR, 3);

pstmt.defineColumnType (2, Types.INTEGER) ;

ResultSet rest = pstmt.executeQuery();

String name = rset.getString(1l);

int id = reset.getInt(2);

You must cast PreparedStatement to OraclePreparedStatement to call
defineColumnType (). The second parameter of defineColumnType () is the data
type of the target SQL column. The third parameter is the length in number of
characters.

Binding and Defining Java Strings to SQL NCHAR Data Types

For binding or defining Java string variables to SQL NCHAR data types, Oracle
provides an extended PreparedStatement which has the setFormOfUse ()
method through which you can explicitly specify the target column of a bind variable
to be a SQL NCHAR data type. The following code illustrates how to bind a Java string
to an NCHAR column.

int employee_id = 12345;

String last_name = "Joe"

oracle.jdbc.OraclePreparedStatement pstmt =
(oracle.jdbc.OraclePreparedStatement)
conn.prepareStatement ("INSERT INTO employees (last_name, employee_id)
VALUES (2, 2)");

pstmt.setFormOfUse (1, oracle.jdbc.OraclePreparedStatement.FORM_NCHAR) ;

pstmt.setString(1l, last_name);

pstmt.setInt (2, employee_id);

pstmt.execute() ; /* execute to insert into first row */
employee_id += 1; /* next employee number */
last_name = "\uFF2A\uFF4F\uFF45"; /* Unicode characters in name */

pstmt.setString(1l, last_name);
pstmt.setInt (2, employee_id);
pstmt.execute () ; /* execute to insert into second row */

You can define the target SQL NCHAR columns by specifying their data types, forms of
use, and lengths. JDBC uses this information to optimize the performance of fetching
SQL NCHAR data from these columns. The following is an example of defining a SQL
NCHAR column.

OraclePreparedStatement pstmt = (OraclePreparedStatement)
conn.prepareStatement ("SELECT ename, empno from emp");
pstmt .defineColumnType (1, Types.VARCHAR, 3,
OraclePreparedStatement .FORM_NCHAR) ;
pstmt.defineColumnType (2, Types.INTEGER) ;

Programming with Unicode 7-21

JDBC Programming with Unicode

ResultSet rest = pstmt.executeQuery();
String name = rset.getString(1l);
int id = reset.getInt(2);

To define a SQL NCHAR column, you must specify the data type that is equivalent to a
SQL CHAR column in the first argument, the length in number of characters in the
second argument, and the form of use in the fourth argument of
defineColumnType ().

You can bind or define a Java string against an NCHAR column without explicitly
specifying the form of use argument. This implies the following;:

= If you do not specify the argument in the setString () method, then JDBC
assumes that the bind or define variable is for the SQL CHAR column. As a result, it
tries to convert them to the database character set. When the data gets to the
database, the database implicitly converts the data in the database character set to
the national character set. During this conversion, data can be lost when the
database character set is a subset of the national character set. Because the national
character set is either UTE8 or AL16UTF16, data loss would happen if the database
character set is not UTF8 or AL32UTES.

= Because implicit conversion from SQL CHAR to SQL NCHAR data types happens in
the database, database performance is degraded.

In addition, if you bind or define a Java string for a column of SQL CHAR data types
but specify the form of use argument, then performance of the database is degraded.
However, data should not be lost because the national character set is always a larger
set than the database character set.

Using the SQL NCHAR Data Types Without Changing the Code

A Java system property has been introduced in the Oracle JDBC drivers for customers
to tell whether the form of use argument should be specified by default in a Java
application. This property has the following purposes:

» Existing applications accessing the SQL CHAR data types can be migrated to
support the SQL NCHAR data types for worldwide deployment without changing a
line of code.

= Applications do not need to call the setFormOfUse () method when binding and
defining a SQL NCHAR column. The application code can be made neutral and
independent of the data types being used in the backend database. With this
property set, applications can be easily switched from using SQL CHAR or SQL
NCHAR.

The Java system property is specified in the command line that invokes the Java
application. The syntax of specifying this flag is as follows:

java -Doracle.jdbc.defaultNChar=true <application class>
With this property specified, the Oracle JDBC drivers assume the presence of the form
of use argument for all bind and define operations in the application.

If you have a database schema that consists of both the SQL CHAR and SQL NCHAR
columns, then using this flag may have some performance impact when accessing the
SQL CHAR columns because of implicit conversion done in the database server.

See Also: "Data Conversion in JDBC" on page 7-23 for more
information about the performance impact of implicit conversion

7-22 Oracle Database Globalization Support Guide

JDBC Programming with Unicode

Using SQL NCHAR String Literals in JDBC

When using NCHAR string literals in JDBC, there is a potential for data loss because
characters are converted to the database character set before processing. See "NCHAR
String Literal Replacement” on page 7-9 for more details.

The desired behavior for preserving the NCHAR string literals can be achieved by
enabling the property set oracle.jdbc.convertNcharLiterals. If the value is
true, then this option is enabled; otherwise, it is disabled. The default setting is false. It
can be enabled in two ways: a) as a Java system property or b) as a connection
property. Once enabled, conversion is performed on all SQL in the VM (system
property) or in the connection (connection property). For example, the property can be
set as a Java system property as follows:

java -Doracle.jdbc.convertNcharLiterals="true" ...

Alternatively, you can set this as a connection property as follows:
Properties props = new Properties();

props.setProperty("oracle.jdbc.convertNcharLiterals", "true");
Connection conn = DriverManager.getConnection(url, props);

If you set this as a connection property, it overrides a system property setting.

Data Conversion in JDBC

Because Java strings are always encoded in UTF-16, JDBC drivers transparently
convert data from the database character set to UTF-16 or the national character set.
The conversion paths taken are different for the JDBC drivers:

s Data Conversion for the OCI Driver
s Data Conversion for Thin Drivers

s Data Conversion for the Server-Side Internal Driver

Data Conversion for the OCI Driver

For the OCI driver, the SQL statements are always converted to the database character
set by the driver before it is sent to the database for processing. When the database
character set is neither US7ASCII nor WESISO8859P1, the driver converts the SQL
statements to UTF-8 first in Java and then to the database character set in C.
Otherwise, it converts the SQL statements directly to the database character set. For
Java string bind or define variables, Table 7-5 summarizes the conversion paths taken
for different scenarios.

Table 7-5 OCI Driver Conversion Path

Form of Use SQL Data Type Conversion Path
Const.CHAR CHAR Java string to and from database character set happens in the JDBC driver.
(Default)

Programming with Unicode 7-23

JDBC Programming with Unicode

Table 7-5 (Cont.) OCI Driver Conversion Path

Form of Use

SQL Data Type Conversion Path

Const .CHAR
(Default)

Const .NCHAR

Const .NCHAR

NCHAR Java string to and from database character set happens in the JDBC driver.
Data in the database character set to and from national character set
happens in the database server.

NCHAR Java string to and from national character set happens in the JDBC driver.

CHAR Java string to and from national character set happens in the JDBC driver.

Data in national character set to and from database character set happens
in the database server.

Data Conversion for Thin Drivers

SQL statements are always converted to either the database character set or to UTF-8
by the driver before they are sent to the database for processing. When the database
character set is either US7ASCII or WESISO8859P1, the driver converts the SQL
statement to the database character set. Otherwise, the driver converts the SQL
statement to UTF-8 and notifies the database that a SQL statement requires further
conversion before being processed. The database, in turn, converts the SQL statements
from UTF-8 to the database character set. The database, in turn, converts the SQL
statement to the database character set. For Java string bind and define variables, the
conversion paths shown in Table 7-6 are taken for the thin driver.

Table 7-6 Thin Driver Conversion Path

Database
Form of Use SQL Data Type Character Set Conversion Path
Const.CHAR CHAR US7ASCII or Java string to and from the database character set
(Default) WESISO8859P1 happens in the thin driver.
Const.CHAR NCHAR US7ASCII or Java string to and from the database character set
(Default) WESISO8859P1 happens in the thin driver.
Data in the database character set to and from the
national character set happens in the database server.
Const.CHAR CHAR non-ASCII and Java string to and from UTF-8 happens in the thin
(Default) non-WE8ISO8859P1 driver.
Data in UTF-8 to and from the database character set
happens in the database server.
Const.CHAR NCHAR non-ASCII and Java string to and from UTF-8 happens in the thin
(Default) non-WESISO8859P1 driver.
Data in UTF-8 to and from national character set
happens in the database server.
Const .NCHAR CHAR Java string to and from the national character set
happens in the thin driver.
Data in the national character set to and from the
database character set happens in the database server.
Const .NCHAR NCHAR Java string to and from the national character set

happens in the thin driver.

Data Conversion for the Server-Side Internal Driver

All data conversion occurs in the database server because the server-side internal
driver works inside the database.

7-24 Oracle Database Globalization Support Guide

JDBC Programming with Unicode

Using oracle.sql.CHAR in Oracle Object Types

JDBC drivers support Oracle object types. Oracle objects are always sent from
database to client as an object represented in the database character set or national
character set. That means the data conversion path in "Data Conversion in JDBC" on
page 7-23 does not apply to Oracle object access. Instead, the oracle.sqgl.CHAR class
is used for passing SQL CHAR and SQL NCHAR data of an object type from the database
to the client.

This section includes the following topics:
s oracle.sql. CHAR
s Accessing SQL CHAR and NCHAR Attributes with oracle.sql. CHAR

oracle.sql.CHAR

The oracle.sqgl.CHAR class has a special functionality for conversion of character
data. The Oracle character set is a key attribute of the oracle.sqgl.CHAR class. The
Oracle character set is always passed in when an oracle. sgl.CHAR object is
constructed. Without a known character set, the bytes of data in the
oracle.sqgl.CHAR object are meaningless.

The oracle.sgl.CHAR class provides the following methods for converting
character data to strings:

m getString()

Converts the sequence of characters represented by the oracle. sgl.CHAR object
to a string, returning a Java string object. If the character set is not recognized, then
getString () returns a SQLException.

m toString()

Identical to getString (), except that if the character set is not recognized, then
toString () returns a hexadecimal representation of the oracle.sqgl.CHAR
data and does not returns a SQLException.

m getStringWithReplacement ()

Identical to getString (), except that a default replacement character replaces
characters that have no Unicode representation in the character set of this
oracle.sql.CHAR object. This default character varies among character sets, but
it is often a question mark.

You may want to construct an oracle.sqgl.CHAR object yourself (to pass into a
prepared statement, for example). When you construct an oracle. sgl.CHAR object,
you must provide character set information to the oracle.sql.CHAR object by using
an instance of the oracle.sqgl.CharacterSet class. Each instance of the
oracle.sqgl.CharacterSet class represents one of the character sets that Oracle
supports.

Complete the following tasks to construct an oracle.sqgl .CHAR object:

1. Create a CharactersSet instance by calling the static CharactersSet .make ()
method. This method creates the character set class. It requires as input a valid
Oracle character set (OracleId). For example:

int OracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set 832

CharacterSet mycharset = CharacterSet.make(Oracleld);

Programming with Unicode 7-25

JDBC Programming with Unicode

Each character set that Oracle supports has a unique predefined OracleId. The
OracleId can always be referenced as a character set specified as Oracle
character_set_name CHARSET where Oracle character set_nameis the
Oracle character set.

2, Construct an oracle.sqgl.CHAR object. Pass to the constructor a string (or the
bytes that represent the string) and the CharacterSet object that indicates how
to interpret the bytes based on the character set. For example:

String mystring = "teststring";
oracle.sql.CHAR mychar = new oracle.sql.CHAR(teststring, mycharset);

The oracle. sgl.CHAR class has multiple constructors: they can take a string, a
byte array, or an object as input along with the CharactersSet object. In the case
of a string, the string is converted to the character set indicated by the
CharacterSet object before being placed into the oracle.sqgl .CHAR object.

The server (database) and the client (or application running on the client) can use
different character sets. When you use the methods of this class to transfer data
between the server and the client, the JDBC drivers must convert the data between the
server character set and the client character set.

Accessing SQL CHAR and NCHAR Attributes with oracle.sql.CHAR

The following is an example of an object type created using SQL:

CREATE TYPE person_type AS OBJECT (
name VARCHAR2 (30), address NVARCHAR2 (256), age NUMBER) ;
CREATE TABLE employees (id NUMBER, person PERSON_TYPE);

The Java class corresponding to this object type can be constructed as follows:

public class person implement SglData
{

oracle.sqgl.CHAR name;

oracle.sqgl.CHAR address;

oracle.sql .NUMBER age;

// SglData interfaces

getSqglType() {...}

writeSql (SglOutput stream) {...}

readSql (SgqlInput stream, String sgltype) {...}
}

The oracle.sgl.CHAR class is used here to map to the NAME attributes of the Oracle
object type, which is of VARCHAR2 data type. JDBC populates this class with the byte
representation of the VARCHAR2 data in the database and the CharacterSet object
corresponding to the database character set. The following code retrieves a person
object from the employees table:

TypeMap map = ((OracleConnection)conn) .getTypeMap();
map.put ("PERSON_TYPE", Class.forName ("person"));
conn.setTypeMap (map) ;

ResultSet rs = stmt.executeQuery (
"SELECT PERSON FROM EMPLOYEES") ;
rs.next () ;

person p = (person) rs.getObject(l);
oracle.sqgl.CHAR sgl_name = p.name;
oracle.sgl.CHAR sqgl_address=p.address;

7-26 Oracle Database Globalization Support Guide

JDBC Programming with Unicode

String java_name = sqgl_name.getString();
String java_address = sqgl_address.getString();

The getString () method of the oracle.sqgl.CHAR class converts the byte array
from the database character set or national character set to UTF-16 by calling Oracle's
Java data conversion classes and returning a Java string. For the rs.getObject (1)
call to work, the SglData interface has to be implemented in the class person, and
the Typemap map has to be set up to indicate the mapping of the object type PERSON_
TYPE to the Java class.

Restrictions on Accessing SQL CHAR Data with JDBC

This section contains the following topic:

» Character Integrity Issues in a Multibyte Database Environment

Character Integrity Issues in a Multibyte Database Environment

Oracle JDBC drivers perform character set conversions as appropriate when character
data is inserted into or retrieved from the database. The drivers convert Unicode
characters used by Java clients to Oracle database character set characters, and vice
versa. Character data that makes a round trip from the Java Unicode character set to
the database character set and back to Java can suffer some loss of information. This
happens when multiple Unicode characters are mapped to a single character in the
database character set. An example is the Unicode full-width tilde character (OxFF5E)
and its mapping to Oracle's JA16S]IS character set. The round-trip conversion for this
Unicode character results in the Unicode character 0x301C, which is a wave dash (a
character commonly used in Japan to indicate range), not a tilde.

Figure 7-2 shows the round-trip conversion of the tilde character.
Figure 7-2 Character Integrity

Oracle database
Character Set
Java Unicode (JA16SJIS) Java Unicode

0x301C - < - < -
: / i 0x8160 L—p - 0x301C

OXFF5E - - OXFF5E

This issue is not a bug in Oracle's JDBC. It is an unfortunate side effect of the
ambiguity in character mapping specifications on different operating systems.
Fortunately, this problem affects only a small number of characters in a small number
of Oracle character sets such as JA16S]J1S, JA16EUC, ZHT16BIG5, and KO16KS5601.
The workaround is to avoid making a full round-trip with these characters.

Programming with Unicode 7-27

ODBC and OLE DB Programming with Unicode

ODBC and OLE DB Programming with Unicode

You should use the Oracle ODBC driver or Oracle Provider for OLE DB to access the
Oracle server when using a Windows platform. This section describes how these
drivers support Unicode. It includes the following topics:

= Unicode-Enabled Drivers in ODBC and OLE DB
= OCI Dependency in Unicode

= ODBC and OLE DB Code Conversion in Unicode
= ODBC Unicode Data Types

= OLE DB Unicode Data Types

s ADO Access

Unicode-Enabled Drivers in ODBC and OLE DB

Oracle's ODBC driver and Oracle Provider for OLE DB can handle Unicode data
properly without data loss. For example, you can run a Unicode ODBC application
containing Japanese data on English Windows if you install Japanese fonts and an
input method editor for entering Japanese characters.

Oracle provides ODBC and OLE DB products for Windows platforms only. For Unix
platforms, contact your vendor.

OCI Dependency in Unicode

OCI Unicode binding and defining features are used by the ODBC and OLE DB
drivers to handle Unicode data. OCI Unicode data binding and defining features are
independent from NLS_LANG. This means Unicode data is handled properly,
irrespective of the NLS_LANG setting on the platform.

See Also: "OCI Programming with Unicode" on page 7-10

ODBC and OLE DB Code Conversion in Unicode

In general, no redundant data conversion occurs unless you specify a different client
data type from that of the server. If you bind Unicode buffer SQL_C_WCHAR with a
Unicode data column like NCHAR, for example, then ODBC and OLE DB drivers
bypass it between the application and OCI layer.

If you do not specify data types before fetching, but call SQLGetData with the client
data types instead, then the conversions in Table 7-7 occur.

7-28 Oracle Database Globalization Support Guide

ODBC and OLE DB Programming with Unicode

Table 7-7 ODBC Implicit Binding Code Conversions

Data Types of the
Data Types of Target Column in
ODBC Client Buffer the Database Fetch Conversions Comments
SQL_C_WCHAR CHAR, If the database character set is a subset ~ No unexpected data loss
VARCHAR?2, of the NLS_LANG character set, then the M
. . . ay degrade performance
CLOB conversions occur in the following if datab h .
order: 1t database character set is
’ a subset of the NLS_LANG
s Database character set character set
s NLS_LANG
s UTF-16 in OCI
s UTF-16 in ODBC
SQL_C_CHAR CHAR, If database character set is a subset of No unexpected data loss
VARCHAR?2, NLS_LANG character set: Mav degrade performance
CLOB y degrade p

Database character set to NLS_LANG in if database character set is
OCI not a subset of NL.S_LANG

If database character set is NOT a subset character set

of NLS_LANG character set:

Database character set, UTF-16, to NLS_
LANG character set in OCI and ODBC

You must specify the data type for inserting and updating operations.

The data type of the ODBC client buffer is given when you call SQLGetData but not
immediately. Hence, SQLFetch does not have the information.

Because the ODBC driver guarantees data integrity, if you perform implicit bindings,
then redundant conversion may result in performance degradation. Your choice is the
trade-off between performance with explicit binding or usability with implicit binding.

OLE DB Code Conversions

Unlike ODBC, OLE DB only enables you to perform implicit bindings for inserting,
updating, and fetching data. The conversion algorithm for determining the
intermediate character set is the same as the implicit binding cases of ODBC.

Programming with Unicode 7-29

ODBC and OLE DB Programming with Unicode

Table 7-8 OLE DB Implicit Bindings

Data Types of Data Types of the
OLE_DB Client Target Column in the In-Binding and Out-Binding
Buffer Database Conversions Comments
DBTYPE_WCHAR CHAR, If database character set is a No unexpected data loss
VARCHAR?2, subset of the NL.S_LANG character M .
. ay degrade performance if
CLOB set: .
database character set is a
Database character set to and from subset of NLS_LANG character
NLS_LANG character set in OCI. set
NLS_LANG character set to UTF-16
in OLE DB
If database character set is NOT a
subset of NL.S_LANG character set:
Database character set to and from
UTF-16 in OCI
DBTYPE_CHAR CHAR, If database character set is a No unexpected data loss
VARCHAR2, subset of the NL.S_ LANG character .
. May degrade performance if
CLOB set: .
database character set is not a
Database character set to and from subset of NLLS_LANG character
NLS_LANG in OCI set
If database character set is not a
subset of NLLS_LANG character set:
Database character set to and from
UTF-16 in OCI. UTF-16 to NLS_
LANG character set in OLE DB
ODBC Unicode Data Types

In ODBC Unicode applications, use SQLWCHAR to store Unicode data. All standard
Windows Unicode functions can be used for SQLWCHAR data manipulations. For
example, wcslen counts the number of characters of SQLWCHAR data:

SQLWCHAR sqglStmt[] = L"select ename from emp";
len = wcslen(sglStmt);

Microsoft's ODBC 3.5 specification defines three Unicode data type identifiers for the
SQL_C_WCHAR, SQL_C_WVARCHAR, and SQL_WLONGVARCHAR clients; and three
Unicode data type identifiers for servers SQI._WCHAR, SQL_WVARCHAR, and SQL_
WLONGVARCHAR.

For binding operations, specify data types for both client and server using
SQLBindParameter. The following is an example of Unicode binding, where the
client buffer Name indicates that Unicode data (SQL_C_WCHAR) is bound to the first
bind variable associated with the Unicode column (SQL_WCHAR):

SQLBindParameter (StatementHandle, 1, SQL_PARAM_INPUT, SQL_C_WCHAR,
SQL_WCHAR, NameLen, 0, (SQLPOINTER)Name, 0, &Name);

Table 7-9 represents the data type mappings of the ODBC Unicode data types for the
server against SQL NCHAR data types.

7-30 Oracle Database Globalization Support Guide

ODBC and OLE DB Programming with Unicode

Tabl