

Oracle® Database
Object-Relational Developer's Guide

11g Release 2 (11.2)

E11822-03

June 2010

Oracle Database Object-Relational Developer's Guide 11g Release 2 (11.2)

E11822-03

Copyright © 1996, 2010, Oracle and/or its affiliates. All rights reserved.

Contributors: Sundeep Abraham, Shashaanka Agrawal, Geeta Arora, Eric Belden, Janis Greenberg,
Chandrasekharan Iyer, Geoff Lee, Anand Manikutty, Valarie Moore, Magdi Morsi, Helen Yeh, Adiel Yoaz,
Qin Yu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documents ... xiv
Conventions ... xv

What’s New in Object-Relational Features? .. xvii

Oracle Database 11g Release 2 (11.2) New Features in Object-Relational Features xvii
Oracle Database 11g Release 1 (11.1) New Features in Object-Relational Features xvii
Oracle Database 10g Release 1 (10.1) New Features in Object-Relational Features xvii

1 Introduction to Oracle Objects

About Oracle Objects .. 1-1
Advantages of Objects... 1-1
Key Features of the Object-Relational Model .. 1-2

Database Features of Oracle Objects ... 1-2
About Object Types ... 1-3
About Object Instances... 1-5
About Object Methods .. 1-5
How Objects are Stored in Tables .. 1-6
Using Object Identifiers to Identify Row Objects... 1-7
Using References to Row Objects ... 1-7
Using Oracle Collections... 1-10
Using Object Views to Access Relational Data.. 1-11
Using Type Inheritance ... 1-11
Using Type Evolution to Change an Existing Object Type ... 1-12

Language Binding Features of Oracle Objects .. 1-12

2 Basic Components of Oracle Objects

SQL Object Types and References .. 2-1
Null Objects and Attributes.. 2-2
Character Length Semantics ... 2-3
Constraints for Object Tables .. 2-3
Indexes for Object Tables ... 2-4
Triggers for Object Tables ... 2-5

iv

Rules for REF Columns and Attributes .. 2-5
Name Resolution.. 2-6

When Table Aliases Are Required ... 2-6
Restriction on Using User-Defined Types with a Remote Database .. 2-7

Object Methods .. 2-8
Member Methods ... 2-8

SELF Parameters in Member Methods ... 2-8
Member Methods for Comparing Objects... 2-9

Static Methods ... 2-12
Constructor Methods.. 2-12

System-Defined Constructors .. 2-13
User-Defined Constructors... 2-13
Literal Invocation of a Constructor Method .. 2-13

External Implemented Methods ... 2-13
Inheritance in SQL Object Types ... 2-13

Supertypes and Subtypes... 2-14
Defining FINAL and NOT FINAL Types and Methods ... 2-15
Creating Subtypes .. 2-16

Creating a Parent or Supertype Object ... 2-16
Creating a Subtype Object .. 2-17
Generalized Invocation ... 2-18
Multiple Subtypes.. 2-19
Creating a Table that Contains Supertype and Subtype Objects 2-19

Declaring Types and Methods NOT INSTANTIABLE .. 2-20
Overloading and Overriding Methods .. 2-21

Overloading Methods ... 2-21
Overriding and Hiding Methods... 2-22
Restrictions on Overriding Methods... 2-22

Dynamic Method Dispatch.. 2-23
Substituting Types in a Type Hierarchy .. 2-23
Column and Row Substitutability .. 2-24

Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows 2-25
Subtypes with Attributes of a Supertype ... 2-25
Substitution of REF Columns and Attributes .. 2-26
Substitution of Collection Elements .. 2-26

Storing Newly Created Subtypes in Substitutable Columns.. 2-26
Dropping Subtypes After Creating Substitutable Columns ... 2-27
Turning Off Substitutability in a New Table .. 2-27
Constraining Substitutability .. 2-28
Modifying Substitutability... 2-29
Restrictions on Modifying Substitutability ... 2-29
Assignments Across Types .. 2-30

Typical Object to Object Assignment .. 2-30
Narrowing Assignment .. 2-31
Collection Assignments .. 2-31

Functions and Operators Useful with Objects .. 2-32
CAST ... 2-32

v

CURSOR ... 2-33
DEREF... 2-33
IS OF type ... 2-33
REF .. 2-34
SYS_TYPEID .. 2-35
TABLE() .. 2-35
TREAT... 2-36

Using TREAT for Narrowing Assignments ... 2-36
Using the TREAT Function to Access Subtype Attributes or Methods 2-37

VALUE.. 2-37

3 Using PL/SQL With Object Types

Declaring and Initializing Objects in PL/SQL ... 3-1
Defining Object Types ... 3-1
Declaring Objects in a PL/SQL Block ... 3-2
How PL/SQL Treats Uninitialized Objects.. 3-3

Manipulating Objects in PL/SQL ... 3-3
Accessing Object Attributes With Dot Notation.. 3-3
Calling Object Constructors and Methods ... 3-4
Updating and Deleting Objects.. 3-5
Manipulating Objects Through Ref Modifiers... 3-5

Using Overloading in PL/SQL with Inheritance ... 3-6
Using Dynamic SQL With Objects ... 3-8

4 Object Support in Oracle Programming Environments

SQL and Object Types ... 4-1
SQL Developer.. 4-2
PL/SQL.. 4-2
Oracle Call Interface (OCI)... 4-2

Associative Access in OCI Programs .. 4-3
Navigational Access in OCI Programs.. 4-3
Object Cache.. 4-3
Building an OCI Program That Manipulates Objects ... 4-4
Defining User-Defined Constructors in C .. 4-4

Pro*C/C++ .. 4-5
Associative Access in Pro*C/C++ ... 4-5
Navigational Access in Pro*C/C++ .. 4-6
Converting Between Oracle Types and C Types... 4-6
Oracle Type Translator (OTT) .. 4-6

Oracle C++ Call Interface (OCCI) ... 4-7
OCCI Associative Relational and Object Interfaces .. 4-7
The OCCI Navigational Interface .. 4-7

Oracle Objects For OLE (OO4O) ... 4-8
Representing Objects in Visual Basic (OraObject)... 4-9
Representing REFs in Visual Basic (OraRef) .. 4-9
Representing VARRAYs and Nested Tables in Visual Basic (OraCollection) 4-9

vi

Java Tools for Accessing Oracle Objects.. 4-9
JDBC Access to Oracle Object Data .. 4-10
SQLJ Access to Oracle Object Data ... 4-10
Choosing a Data Mapping Strategy ... 4-11
JPublisher ... 4-11

Using JPublisher to Create Java Classes for JDBC and SQLJ Programs 4-11
What JPublisher Produces for a User-Defined Object Type .. 4-11

Java Object Storage ... 4-12
Representing SQLJ Types to the Server .. 4-13
Creating SQLJ Object Types ... 4-13
Additional Notes About Mapping .. 4-13
Evolving SQLJ Types... 4-14
Constraints .. 4-15
Querying SQLJ Objects ... 4-15
Inserting Java Objects .. 4-15
Updating SQLJ Objects ... 4-15

Defining User-Defined Constructors in Java .. 4-15
JDeveloper.. 4-16

Application Development Framework (ADF)... 4-16
TopLink ... 4-16

XML .. 4-16
Utilities Providing Support for Objects.. 4-16

Import/Export of Object Types .. 4-17
Types.. 4-17
Object View Hierarchies ... 4-17

SQL*Loader.. 4-17

5 Support for Collection Data Types

Collection Data Types.. 5-1
Creating a Collection Type ... 5-2
Creating an Instance of a VARRAY or Nested Table.. 5-2
Constructor Methods for Collections .. 5-2
Varrays... 5-3
Nested Tables.. 5-4

Storing Elements of Nested Tables... 5-5
Specifying a Tablespace When Storing a Nested Table... 5-6

Increasing the Size and Precision of VARRAY and Nested Table Elements............................. 5-6
Increasing VARRAY Limit Size ... 5-7
Creating a Varray Containing LOB References ... 5-7

Multilevel Collection Types ... 5-8
Nested Table Storage Tables for Multilevel Collection Types... 5-8
Varray Storage for Multilevel Collections ... 5-10
Constructors for Multilevel Collections... 5-11

Operations on Collection Data Types ... 5-12
Querying Collections .. 5-12

Nesting Results of Collection Queries .. 5-12
Unnesting Results of Collection Queries.. 5-13

vii

Unnesting Queries Containing Table Expression Subqueries... 5-14
Unnesting Queries with Multilevel Collections .. 5-14

Performing DML Operations on Collections .. 5-15
Piecewise Operations on Nested Tables... 5-15
Piecewise Operations on Multilevel Nested Tables.. 5-16
Atomical Changes on VARRAYs and Nested Tables... 5-17
Collections as Atomic Data Items.. 5-17

Using BULK COLLECT to Return Entire Result Sets .. 5-18
Conditions that Compare Nested Tables... 5-18

Equal and Not Equal Comparisons... 5-19
IN Comparison... 5-19
Subset of Multiset Comparison.. 5-19
Member of a Nested Table Comparison... 5-19
Empty Comparison.. 5-20
Set Comparison .. 5-20

Multiset Operations for Nested Tables .. 5-20
CARDINALITY .. 5-21
COLLECT.. 5-21
MULTISET EXCEPT .. 5-21
MULTISET INTERSECT ... 5-21
MULTISET UNION ... 5-22
POWERMULTISET.. 5-22
POWERMULTISET_BY_CARDINALITY .. 5-23
SET ... 5-23

Partitioning Tables That Contain Oracle Objects ... 5-23

6 Applying an Object Model to Relational Data

Why Use Object Views .. 6-1
Defining Object Views.. 6-2
Using Object Views in Applications .. 6-3
Nesting Objects in Object Views .. 6-4
Identifying Null Objects in Object Views .. 6-5
Using Nested Tables and Varrays in Object Views ... 6-5

Single-Level Collections in Object Views ... 6-5
Multilevel Collections in Object Views... 6-7

Specifying Object Identifiers for Object Views... 6-8
Creating References to View Objects ... 6-9
Modelling Inverse Relationships with Object Views.. 6-10
Updating Object Views .. 6-10

Updating Nested Table Columns in Views... 6-11
Using INSTEAD OF Triggers to Control Mutating and Validation .. 6-11

Applying the Object Model to Remote Tables .. 6-12
Defining Complex Relationships in Object Views .. 6-13

Tables and Types to Demonstrate Circular View References... 6-14
Creating Object Views with Circular References ... 6-15

Object View Hierarchies .. 6-17
Creating an Object View Hierarchy.. 6-19

viii

The Flat Model.. 6-19
The Horizontal Model ... 6-21
The Vertical Model .. 6-22

Querying a View in a Hierarchy ... 6-23
Privileges for Operations on View Hierarchies .. 6-25

7 Managing Oracle Objects

Privileges on Object Types and Their Methods ... 7-1
System Privileges for Object Types ... 7-1
Schema Object Privileges .. 7-2
Using Types in New Types or Tables ... 7-2
Example: Privileges on Object Types .. 7-2
Access Privileges on Objects, Types, and Tables... 7-4

Type Dependencies .. 7-5
Creating Incomplete Types... 7-6
Completing Incomplete Types .. 7-7
Manually Recompiling a Type ... 7-7
Using CREATE OR REPLACE TYPE with Type and Table Dependencies 7-7
Type Dependencies of Substitutable Tables and Columns ... 7-8
The DROP TYPE FORCE Option... 7-9

Synonyms for Object Types ... 7-9
Creating a Type Synonym ... 7-10
Using a Type Synonym .. 7-10

Describing Schema Objects That Use Synonyms .. 7-11
Dependents of Type Synonyms ... 7-11
Restriction on Replacing a Type Synonym .. 7-12
Dropping Type Synonyms ... 7-12
Renaming Type Synonyms... 7-12
Public Type Synonyms and Local Schema Objects... 7-12

Performance Tuning.. 7-12

8 Advanced Topics for Oracle Objects

Storage of Objects .. 8-1
Leaf-Level Attributes ... 8-1
How Row Objects Are Split Across Columns.. 8-2
Hidden Columns for Tables with Column Objects... 8-2
Hidden Columns for Substitutable Columns and Object Tables .. 8-2
Storage of REFs... 8-4
Internal Layout of Nested Tables... 8-4
Internal Layout of VARRAYs... 8-5

Creating Indexes on Typeids or Attributes ... 8-5
Indexing a Type-Discriminant Column.. 8-5
Indexing Subtype Attributes of a Substitutable Column ... 8-5

Type Evolution .. 8-6
Type Evolution and Dependent Schema Objects .. 8-7
Options for Updating Data ... 8-7
Effects of Structural Changes to Types ... 8-8

ix

Altering a Type by Adding and Dropping Attributes.. 8-8
Altering a Type by Adding a Nested Table Attribute ... 8-10
Validating a Type That Has Been Altered... 8-11
If a Type Change Validation Fails .. 8-13
ALTER TYPE Statement for Type Evolution .. 8-14
ALTER TABLE Statement for Type Evolution ... 8-15

System-Defined and User-Defined Constructors ... 8-16
The Attribute-Value Constructor.. 8-16
Constructors and Type Evolution... 8-16
Advantages of User-Defined Constructors ... 8-17
Defining and Implementing User-Defined Constructors ... 8-17
Overloading and Hiding Constructors .. 8-18
Calling User-Defined Constructors .. 8-18
Constructors for SQLJ Object Types... 8-20

Transient and Generic Types... 8-20
User-Defined Aggregate Functions ... 8-23
How Locators Improve the Performance of Nested Tables... 8-23

9 Design Considerations for Oracle Objects

General Storage Considerations for Objects .. 9-1
Storing Objects as Columns or Rows .. 9-1

Column Object Storage in Relational Tables... 9-2
Row Object Storage in Object Tables ... 9-4

Storage Considerations for Object Identifiers (OIDs) ... 9-4
System-Generated Object Identifiers (OIDs) .. 9-4
Primary-Key Based Object Identifiers (OIDs)... 9-4
System-Generated Versus Primary-Key Based OIDs .. 9-5

Performance of Object Comparisons.. 9-5
Design Considerations for REFs ... 9-5

Storage Size of REFs... 9-6
Integrity Constraints for REF Columns .. 9-6
Performance and Storage Considerations for Scoped REFs .. 9-6

Indexing Scoped REFs.. 9-7
Speeding up Object Access Using the WITH ROWID Option .. 9-7

Design Considerations for Collections .. 9-8
Viewing Object Data in Relational Form with Unnesting Queries... 9-8

Using Procedures and Functions in Unnesting Queries ... 9-8
Storage Considerations for Varrays .. 9-9

Propagating VARRAY Size Change.. 9-10
Performance of Varrays Versus Nested Tables .. 9-10
Design Considerations for Nested Tables ... 9-10

Nested Table Storage... 9-10
Nested Table Indexes .. 9-13
Nested Table Locators ... 9-13
Optimizing Set Membership Queries ... 9-14

Design Considerations for Multilevel Collections ... 9-15
Design Considerations for Methods ... 9-18

x

Choosing a Language for Method Functions.. 9-18
Static Methods ... 9-20
Using SELF IN OUT NOCOPY with Member Procedures ... 9-21
Function-Based Indexes on the Return Values of Type Methods.. 9-21

Writing Reusable Code Using Invoker Rights .. 9-22
Using Roles with Invoker's Rights Subprograms... 9-23
Replicating Object Tables and Columns .. 9-24

Replicating Columns of Object, Collection, or REF Type ... 9-24
Replicating Object Tables... 9-24

Constraints on Objects ... 9-25
Considerations Related to Type Evolution... 9-25

Pushing a Type Change Out to Clients.. 9-25
Changing Default Constructors .. 9-26
Altering the FINAL Property of a Type... 9-26

Parallel Queries with Oracle Objects .. 9-26
Design Consideration Tips and Techniques .. 9-27

Deciding Whether to Evolve a Type or Create a Subtype... 9-27
How ANYDATA Differs from User-Defined Types.. 9-28
Polymorphic Views: An Alternative to an Object View Hierarchy... 9-28
The SQLJ Object Type... 9-29

The Intended Use of SQLJ Object Types... 9-29
Actions Performed When Creating a SQLJ Object Type.. 9-29
Uses of SQLJ Object Types.. 9-29
Uses of Custom Object Types... 9-29
Differences Between SQLJ and Custom Object Types Through JDBC 9-30

Miscellaneous Design Tips .. 9-30
Column Substitutability and the Number of Attributes in a Hierarchy.......................... 9-30
Circular Dependencies Among Types .. 9-30

A Sample Application Using Object-Relational Features

Introduction to the Sample Application ... A-1
Implementing the Schema on the Relational Model ... A-2

Entities and Relationships.. A-2
Creating Tables Under the Relational Model.. A-3

Customer_reltab... A-4
PurchaseOrder_reltab.. A-4
Stock_reltab... A-5
LineItems_reltab... A-5

Inserting Values Under the Relational Model .. A-5
Querying Data Under the Relational Model ... A-6
Updating Data Under the Relational Model ... A-7
Deleting Data Under the Relational Model... A-7

Implementing the Schema on the Object-Relational Model .. A-7
Defining Types .. A-8
Method Definitions ... A-12

The getPONo Method ... A-13
The sumLineItems Method... A-13

xi

The compareCustOrders Method.. A-14
Creating Object Tables.. A-14

The Object Table Customer_objtab ... A-15
Object Data Types as a Template for Object Tables ... A-16
Object Identifiers and References ... A-16
Object Tables with Embedded Objects .. A-17

The Object Table Stock_objtab ... A-17
The Object Table PurchaseOrder_objtab .. A-17
Inserting Values.. A-22
Querying ... A-24
Deleting ... A-25

Evolving Object Types ... A-26
Adding an Attribute to the Customer Type.. A-27
Working with Multilevel Collections... A-29

Inserting into Nested Tables... A-29
Inserting a New Purchase Order with Line Items .. A-30
Querying Multilevel Nested Tables .. A-31

Type Inheritance and Substitutable Columns... A-33
Creating a Subtype... A-33
Inserting Subtypes ... A-34
Querying Substitutable Columns .. A-35

Glossary

Index

xii

xiii

Preface

Oracle Database Object-Relational Developer's Guide explains how to use the
object-relational features of the Oracle Database, 11g release 1 (11.1). Information in
this guide applies to versions of the Oracle Database that run on all platforms, and
does not include system-specific information.

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Database Object-Relational Developer's Guide is intended for programmers
developing new applications or converting existing applications to run in the Oracle
environment. The object-relational features are often used in content management,
data warehousing, data/information integration, and similar applications that deal
with complex structured data. The object views feature can be valuable when writing
new C++, C#, Java, or XML applications on top of an existing relational schema.

This guide assumes that you have a working knowledge of application programming
and that you are familiar with the use of Structured Query Language (SQL) to access
information in relational databases. You should be familiar with the information in
Oracle Database SQL Quick Reference, Oracle Database PL/SQL Language Reference, and
Oracle Database 2 Day Developer's Guide, and with object-oriented programming
techniques.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

xiv

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see these Oracle resources:

■ Oracle Database Concepts for information about basic Oracle concepts

■ Oracle Database SQL Language Reference and Oracle Database Administrator's Guide
for information about SQL

■ Oracle Database PL/SQL Language Reference for information about PL/SQL, the
procedural language extension to Oracle SQL

■ Oracle Database Advanced Application Developer's Guide for general information
about developing applications

■ Oracle Database JDBC Developer's Guide and Reference and Oracle Database Java
Developer's Guide for information about Oracle object-relational features through
Java

■ Oracle Call Interface Programmer's Guide and Oracle C++ Call Interface Programmer's
Guide for information about using the Oracle Call Interface (OCI) and Oracle C++
Call Interface (OCCI) to build third-generation language (3GL) applications that
interact with one or more the Oracle databases

■ Pro*C/C++ Programmer's Guide for information about Oracle's Pro* series of
precompilers, which allow you to embed SQL and PL/SQL in 3GL application
programs written in Ada, C, C++, COBOL, or FORTRAN

■ Oracle XML DB Developer's Guide and Oracle XML Developer's Kit Programmer's
Guide for information about developing applications with XML

■ Oracle Database SecureFiles and Large Objects Developer's Guide for information about
Large Objects (LOBs)

■ Oracle Data Provider for .NET Developer's Guide

■ Oracle Developer Tools for Visual Studio Help

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

xv

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/contact/welcome.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/index.html

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvi

xvii

What’s New in Object-Relational Features?

This section describes the new object-relational features of Oracle 11g release 1 (11.1).
New features information from previous releases is also retained to help users
upgrading to the current release.

The following sections describe the new features in Oracle Object-Relational Features:

■ Oracle Database 11g Release 2 (11.2) New Features in Object-Relational Features

■ Oracle Database 11g Release 1 (11.1) New Features in Object-Relational Features

■ Oracle Database 10g Release 1 (10.1) New Features in Object-Relational Features

Oracle Database 11g Release 2 (11.2) New Features in Object-Relational
Features

FORCE Option Added to CREATE OR REPLACE TYPE Statement
CREATE OR REPLACE TYPE statements now have a FORCE option, which enables you
to replace the type even if it has type dependents. This does not work without the
FORCE option.

Oracle Database 11g Release 1 (11.1) New Features in Object-Relational
Features

Support for Generalized Invocation
Generalized invocation syntax is now supported. Therefore, a member method in a
subtype can statically invoke (dispatch) a member method in any supertype in the
supertype hierarchy of the current subtype, including the subtype's immediate
supertype. See "Generalized Invocation" on page 2-18.

Oracle Database 10g Release 1 (10.1) New Features in Object-Relational
Features

New object-relational features for Oracle 10g release 1 (10.1) include the following
collection enhancements:

See Also: "Using CREATE OR REPLACE TYPE with Type and Table
Dependencies" on page 7-7

xviii

Nested Table and Varray Storage
New functionality for nested table and varray storage, including the evolution of
varray size and specification of a tablespace when storing nested tables. See
"Collection Data Types" on page 5-1.

Nested Table Comparisons and ANSI SQL Multiset Operations
New functionality for nested table comparisons and ANSI SQL multiset operations for
nested tables. See "Operations on Collection Data Types" on page 5-12.

1

Introduction to Oracle Objects 1-1

1 Introduction to Oracle Objects

This chapter describes the advantages and key features of the Oracle object-relational
model. The chapter contains these topics:

■ About Oracle Objects

■ Advantages of Objects

■ Key Features of the Object-Relational Model

About Oracle Objects
Oracle object types are user-defined types that make it possible to model real-world
entities, such as customers and purchase orders, as objects in the database.

New object types can be created from any built-in database types and any previously
created object types, object references, and collection types. Object types can work with
complex data, such as images, audio, and video. Oracle Database stores metadata for
user-defined types in a schema that is available to SQL, PL/SQL, Java, and other
languages.

Object types and related object-oriented features, such as varrays and nested tables,
provide higher-level ways to organize and access data in the database. Underneath the
object layer, data is still stored in columns and tables, but you can work with the data
in terms of the real-world entities that make the data meaningful. Instead of thinking
in terms of columns and tables when you query the database, you can simply select
entities that you have created, such as customers and purchase orders.

You can begin to use object-oriented features while continuing to work with most of
your data relationally, or you use to an object-oriented approach entirely.

Object types are also known as user-defined types or ADTs. Oracle Database PL/SQL
Language Reference generally refers to them as ADTs.

Data that is stored object-relationally is not compatible with editioning views.

Advantages of Objects
In general, the object-type model is similar to the class mechanism found in C++ and
Java. Like classes, the reusability of objects makes it possible to develop database
applications faster and more efficiently. By natively supporting object types in the
database, Oracle Database enables application developers to directly access the data
structures used by their applications.

Objects offer other advantages over a purely relational approach, such as:

■ Objects Can Encapsulate Operations Along with Data

Key Features of the Object-Relational Model

1-2 Oracle Database Object-Relational Developer's Guide

■ Objects Are Efficient

■ Objects Can Represent Part-Whole Relationships

Objects Can Encapsulate Operations Along with Data
Database tables contain only data. Objects can include the ability to perform
operations that are likely to be performed on that data. Thus, a purchase order object
might include a method to calculate the cost of all the items purchased. Or a customer
object might have methods to return the customer's buying history and payment
pattern. An application can simply call the methods to retrieve the information.

Objects Are Efficient
Using object types allows for greater efficiency:

■ Object types and their methods are stored with the data in the database, so they
are available for any application to use. Developers do not need to re-create
similar structures and methods in every application. This also ensures that
developers are using consistent standards.

■ You can fetch and manipulate a set of related objects as a single unit. A single
request to fetch an object from the server can retrieve other objects that are
connected to it. When you reference a column of a SQL object type, you retrieve
the whole object.

Objects Can Represent Part-Whole Relationships
Object types allow you to represent part-whole relationships. For example: in a
relational table for stock items, a piston and an engine may have the same status.
Using objects can reduce the need to represent pistons as parts of engines with
complicated schemas of multiple tables with primary key-foreign key relationships.
An object can have other objects as attributes, and the attribute objects can have their
own object attributes too. An entire parts-list hierarchy can be built up in this way
from interlocking object types.

Key Features of the Object-Relational Model
Oracle Database implements the object-type model as an extension of the relational
model, while continuing to support standard relational database functionality, such as
queries, fast commits, backup and recovery, scalable connectivity, row-level locking,
read consistency, and more.

SQL and various programmatic interfaces and languages, including PL/SQL, Java,
Oracle Call Interface, Pro*C/C++, OO4O, and C# have been enhanced with extensions
to support Oracle objects. The result is an object-relational model that offers the
intuitiveness and economy of an object interface while preserving the high
concurrency and throughput of a relational database.

This section contains these topics:

■ Database Features of Oracle Objects

■ Language Binding Features of Oracle Objects

Database Features of Oracle Objects
This section describes features and concepts of the object-relational model that are
related to the database.

This section contains these topics:

Key Features of the Object-Relational Model

Introduction to Oracle Objects 1-3

■ About Object Types

■ About Object Instances

■ About Object Methods

■ How Objects are Stored in Tables

■ Using Object Identifiers to Identify Row Objects

■ Using References to Row Objects

■ Using Oracle Collections

■ Using Object Views to Access Relational Data

■ Using Type Inheritance

■ Using Type Evolution to Change an Existing Object Type

About Object Types
An object type is a kind of data type. You can use it in the same ways that you use
standard data types such as NUMBER or VARCHAR2. For example, you can specify an
object type as the data type of a column in a relational table, and you can declare
variables of an object type. The value is a variable or an instance of that type. An object
instance is also called an object.

Figure 1–1 shows an object type, person_typ, and two instances of the object type.

Figure 1–1 An Object Type and Object Instances

Object types serve as blueprints or templates that define both structure and behavior.
Object types are database schema objects, subject to the same kinds of administrative
control as other schema objects. Application code can retrieve and manipulate these
objects. See Chapter 7, "Managing Oracle Objects".

You use the CREATE TYPE SQL statement to define object types.

Example 1–1 shows how to create an object type named person_typ. In the example,
an object specification and object body are defined. For information on the CREATE
TYPE SQL statement and on the CREATE TYPE BODY SQL statement, see Oracle
Database PL/SQL Language Reference.

idno
first_name
last_name
email
phone

Object Type person_typ

Attributes Methods
get_idno
display_details

idno:
first_name:
last_name:
email:
phone:

101
John
Smith
jsmith@example.com
1-650-555-0135

Object

idno:
first_name:
last_name:
email:
phone:

65
Verna
Mills
vmills@example.com
1-650-555-0125

Object

Key Features of the Object-Relational Model

1-4 Oracle Database Object-Relational Developer's Guide

Example 1–1 Creating the person_typ Object Type

CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),
 email VARCHAR2(25),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ));
/

CREATE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ) IS
 BEGIN
 -- use the PUT_LINE procedure of the DBMS_OUTPUT package to display details
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(idno) || ' ' || first_name || ' ' || last_name);
 DBMS_OUTPUT.PUT_LINE(email || ' ' || phone);
 END;
END;
/

Object types differ from the standard data types that are native to a relational
database:

■ Oracle Database does not supply predefined object types. You define the object
types you want by combining built-in types with user-defined ones as shown in
Example 1–1.

■ Object types are composed of attributes and methods as illustrated in Figure 1–2.

– Attributes hold the data about an object. Attributes have declared data types
which can, in turn, be other object types.

– Methods are procedures or functions that applications can use to perform
operations on the attributes of the object type. Methods are optional. They
define the behavior of objects of that type.

Note: Running Examples: Many examples in this guide can be run
using the HR sample schema. Comments at the beginning of most
examples indicate if any previous example code is required.

Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Key Features of the Object-Relational Model

Introduction to Oracle Objects 1-5

Figure 1–2 Object Attributes and Methods

About Object Instances
A variable of an object type is an instance of the type, or an object. An object has the
attributes and methods defined for its type. Because an object instance is a concrete
thing, you can assign values to its attributes and call its methods.

Defining an object type does not allocate any storage. After they are defined, object
types can be used in SQL statements in most of the same places you use types such as
NUMBER or VARCHAR2. Storage is allocated once you create an instance of the object
type.

Example 1–2 shows how to create object instances of the person_typ created in
Example 1–1, and define a relational table to keep track of these instances as contacts.

Example 1–2 Creating the contacts Table with an Object Type Column

-- requires existing person_typ fr. Ex 1-1
CREATE TABLE contacts (
 contact person_typ,
 contact_date DATE);

INSERT INTO contacts VALUES (
 person_typ (65, 'Verna', 'Mills', 'vmills@example.com', '1-650-555-0125'),
 '24 Jun 2003');

The contacts table is a relational table with an object type as the data type of its
contact column. Objects that occupy columns of relational tables are called column
objects. See "How Objects are Stored in Tables" on page 1-6.

About Object Methods
Object methods are functions or procedures that you can declare in an object type
definition to implement behavior that you want objects of that type to perform.

The general kinds of methods that can be declared in a type definition are:

■ Member Methods

Using member methods, you can provide access to the data of an object, and
otherwise define operations that an application performs on the data. To perform
an operation, the application calls the appropriate method on the appropriate
object.

■ Static Methods

Static methods compare object instances and perform operations that do not use
the data of any particular object, but, instead, are global to an object type.

■ Constructor Methods

attribute declarations

spec

method specs

public interface

method bodies

body
private implementation

Key Features of the Object-Relational Model

1-6 Oracle Database Object-Relational Developer's Guide

A default constructor method is implicitly defined for every object type, unless it
is overwritten with a user-defined constructor. A constructor method is called on a
type to construct or create an object instance of the type.

Example 1–3 show the get_idno() method, created in Example 1–1, to display the Id
number of persons in the contacts table:

Example 1–3 Using the get_idno Object Method

-- requires Ex 1-1 and Ex 1-2
SELECT c.contact.get_idno() FROM contacts c;

How Objects are Stored in Tables
Objects can be stored in two types of tables:

■ Object tables: store only objects

In an object table, each row represents an object, which is referred to as a row
object. See "Creating and Using Object Tables" on page 1-6

■ Relational tables: store objects with other table data

Objects that are stored as columns of a relational table, or are attributes of other
objects, are called column objects. Example 1–2 shows the contacts table which
stores an instance of the person_typ object.

Objects that have meaning outside of the relational database in which they are
contained, or objects that are shared among more than one relational database object,
should be made referenceable as row objects. That is, such objects should be stored as
a row object in an object table instead of in a column of a relational table.

Creating and Using Object Tables

Example 1–4 shows a CREATE TABLE statement that creates an object table for
person_typ objects.

Example 1–4 Creating the person_obj_table Object Table

-- requires Ex. 1-1
CREATE TABLE person_obj_table OF person_typ;

You can view this table in two ways:

■ As a single-column table, in which each row is a person_typ object, allowing
you to perform object-oriented operations.

■ As a multi-column table, in which each attribute of the object type person_typ
such as idno, first_name, last_name, and so on, occupies a column, allowing
you to perform relational operations.

Example 1–5 illustrates several operations on an object table.

Example 1–5 Operations on the person_obj_table Object Table

-- requires Ex. 1-1 and 1-4
INSERT INTO person_obj_table VALUES (
 person_typ(101, 'John', 'Smith', 'jsmith@example.com', '1-650-555-0135'));

See Also: "Object Methods" on page 2-8 for detailed information

See Also: "Storing Objects as Columns or Rows" on page 9-1

Key Features of the Object-Relational Model

Introduction to Oracle Objects 1-7

SELECT VALUE(p) FROM person_obj_table p
 WHERE p.last_name = 'Smith';

DECLARE
 person person_typ;
BEGIN -- PL/SQL block for selecting a person and displaying details
 SELECT VALUE(p) INTO person FROM person_obj_table p WHERE p.idno = 101;
 person.display_details();
END;
/

The INSERT INTO SQL statement in Example 1–5 inserts a person_typ object into
person_obj_table, treating person_obj_table as a multi-column table.

The SELECT SQL statement selects from person_obj_table as a single-column
table, using the VALUE function to return rows as object instances. See "VALUE" on
page 2-37 for information on the VALUE function.

The PL/SQL block selects a specific person and executes a member function of
person_typ to display details about the specified person. For more information
about using PL/SQL with objects, see Chapter 3, "Using PL/SQL With Object Types".

Using Object Identifiers to Identify Row Objects
Object identifiers (OIDs) uniquely identify row objects in object tables. You cannot
directly access object identifiers, but you can make references (REFs) to the object
identifiers and directly access the REFs, as discussed in "Using References to Row
Objects" on page 1-7.

There are two types of object identifiers.

■ System-Generated Object Identifiers (default)

Oracle automatically creates system-generated object identifiers for row objects in
object tables unless you choose the primary-key based option.

■ Primary-Key Based Object Identifiers

You have the option to create primary-key based OIDs when you create the table
using the CREATE TABLE statement.

Using References to Row Objects
A REF is a logical pointer or reference to a row object that you can construct from an
object identifier (OID). You can use the REF to obtain, examine, or update the object.
You can change a REF so that it points to a different object of the same object type
hierarchy or assign it a null value.

Note: Column objects are identified by the primary key of the row,
and, therefore, do not need a specific object identifier.

See Also:

■ "Specifying Object Identifiers for Object Views" on page 6-8

■ "Storage Considerations for Object Identifiers (OIDs)" on page 9-4

■ "Object Identifiers and References" on page A-16

Key Features of the Object-Relational Model

1-8 Oracle Database Object-Relational Developer's Guide

REFs are Oracle Database built-in data types. REFs and collections of REFs model
associations among objects, particularly many-to-one relationships, thus reducing the
need for foreign keys. REFs provide an easy mechanism for navigating between
objects.

Example 1–6 illustrates a simple use of a REF.

Example 1–6 Using a REF to the emp_person_typ Object

CREATE TYPE emp_person_typ AS OBJECT (
 name VARCHAR2(30),
 manager REF emp_person_typ);
/
CREATE TABLE emp_person_obj_table OF emp_person_typ;

INSERT INTO emp_person_obj_table VALUES (
 emp_person_typ ('John Smith', NULL));

INSERT INTO emp_person_obj_table
 SELECT emp_person_typ ('Bob Jones', REF(e))
 FROM emp_person_obj_table e
 WHERE e.name = 'John Smith';

This example first creates the emp_person_typ John Smith, with NULL value for a
manager. Then it adds the emp_person_typ Bob Jones as John Smith’s supervisee.

The following query and its output show the effect:

COLUMN name FORMAT A10
COLUMN manager FORMAT A50
select * from emp_person_obj_table e;

NAME MANAGER
---------- --
John Smith
Bob Jones 0000220208424E801067C2EABBE040578CE70A0707424E8010

67C1EABBE040578CE70A0707

Example 1–10 on page 1-9 shows how to dereference the object, so that Manager
appears as a name rather than an object identifier.

See "Rules for REF Columns and Attributes" on page 2-5 and "Design Considerations
for REFs" on page 9-5.

Using Scoped REFs You can constrain a column type, collection element, or object type
attribute to reference a specified object table by using the SQL constraint subclause
SCOPE IS when you declare the REF. Scoped REF types require less storage space and
allow more efficient access than unscoped REF types.

Example 1–7 shows REF column contact_ref scoped to person_obj_table
which is an object table of type person_typ.

Example 1–7 Creating the contacts_ref Table Using a Scoped REF

-- requires Ex. 1-1, 1-4, and 1-5
CREATE TABLE contacts_ref (
 contact_ref REF person_typ SCOPE IS person_obj_table,
 contact_date DATE);

Key Features of the Object-Relational Model

Introduction to Oracle Objects 1-9

To insert a row in the table, you could issue the following:

INSERT INTO contacts_ref
 SELECT REF(p), '26 Jun 2003'
 FROM person_obj_table p
 WHERE p.idno = 101;

A REF can be scoped to an object table of the declared type (person_typ in the
example) or of any subtype of the declared type. If a REF is scoped to an object table of
a subtype, the REF column is effectively constrained to hold only references to
instances of the subtype (and its subtypes, if any) in the table. See "Inheritance in SQL
Object Types" on page 2-13.

Checking for Dangling REFs It is possible for the object identified by a REF to become
unavailable if the object has been deleted or some necessary privilege has been
deleted. This is a dangling REF. You can use the Oracle Database SQL predicate IS
DANGLING to test REFs for this condition.

Dangling REFs can be avoided by defining referential integrity constraints. See "Rules
for REF Columns and Attributes" on page 2-5.

Dereferencing REFs Accessing the object that the REF refers to is called dereferencing
the REF. Oracle Database provides the DEREF operator to do this.

Example 1–8 Using DEREF to Dereference a REF

-- requires Ex. 1-6
SELECT DEREF(e.manager) FROM emp_person_obj_table e;

DEREF(E.MANAGER)(NAME, MANAGER)
--
EMP_PERSON_TYP('John Smith', NULL)

Example 1–9 shows that dereferencing a dangling REF returns a null object.

Example 1–9 Dereferencing a Dangling Ref

--requires Ex. 1-1, 1-4, 1-5, and 1-7
-- DELETE command needed to cause dangling ref
DELETE from person_obj_table WHERE idno = 101;
/
SELECT DEREF(c.contact_ref), c.contact_date FROM contacts_ref c;

Oracle Database also provides implicit dereferencing of REFs. For example, to access
the manager's name for an employee, you can use a SELECT statement.

Example 1–10 follows the pointer from the person's name and retrieves the manager's
name e.manager.name.

Example 1–10 Implicitly Deferencing a REF

-- requires Ex. 1-6
SELECT e.name, e.manager.name FROM emp_person_obj_table e
 WHERE e.name = 'Bob Jones';

Following the REF in this manner is allowed in SQL, but PL/SQL requires the DEREF
keyword as in Example 1–8 on page 1-9.

Key Features of the Object-Relational Model

1-10 Oracle Database Object-Relational Developer's Guide

Obtaining a REF to a Row Object You can obtain a REF to a row object by selecting the
object from its object table and applying the REF operator.

Example 1–11 shows how to obtain a REF to the person with an idno equal to 101.

Example 1–11 Obtaining a REF to a Row Object

-- requires Ex. 1-1, 1-4, and 1-5
DECLARE
 person_ref REF person_typ;
 person person_typ;
BEGIN

 SELECT REF(p) INTO person_ref
 FROM person_obj_table p
 WHERE p.idno = 101;

 select deref(person_ref) into person from dual;
 person.display_details();

END;
/

The query returns exactly one row. See "Storage Size of REFs" on page 9-6.

Comparing REF Variables Two REF variables can be compared if, and only if, the targets
that they reference are both of the same declared type, or one is a subtype of the other.
They can only be compared for equality.

Using Oracle Collections
For modeling multi-valued attributes and many-to-many relationships, Oracle
Database supports two collection data types: varrays and nested tables. You can use
collection types anywhere other data types are used. You can have object attributes of
a collection type in addition to columns of a collection type. For example, a purchase
order object type might contain a nested table attribute that holds the collection of line
items for the purchase order.

To define a collection type, use the CREATE TYPE . . . AS TABLE OF statement.

Example 1–12 shows CREATE TYPE statements that define a collection and an object
type.

Example 1–12 Creating the people_typ Collection Data Type

-- requires Ex. 1-1
CREATE TYPE people_typ AS TABLE OF person_typ;
/

CREATE TYPE dept_persons_typ AS OBJECT (
 dept_no CHAR(5),
 dept_name CHAR(20),
 dept_mgr person_typ,
 dept_emps people_typ);
/

Note the following about this example:

■ The collection type, people_typ, is specifically a nested table type.

Key Features of the Object-Relational Model

Introduction to Oracle Objects 1-11

■ The dept_persons_typ object type has an attribute dept.emps of people_
typ. Each row in the dept.emps nested table is an object of type person_typ
which was defined in Example 1–1 on page 1-4.

Using Object Views to Access Relational Data
An object view is a way to access relational data using object-relational features. It lets
you develop object-oriented applications without changing the underlying relational
schema.

You can access objects that belong to an object view in the same way that you access
row objects in an object table. Oracle Database also supports materialized view objects
of user-defined types from data stored in relational schemas and tables.

Object views let you exploit the polymorphism that a type hierarchy makes possible.
A polymorphic expression takes a value of the expression's declared type or any of
that type's subtypes. If you construct a hierarchy of object views that mirrors some or
all of the structure of a type hierarchy, you can query any view in the hierarchy to
access data at just the level of specialization you are interested in. If you query an
object view that has subviews, you can get back polymorphic data—rows for both the
type of the view and for its subtypes. See Chapter 6, "Applying an Object Model to
Relational Data".

Using Type Inheritance
Type inheritance enables you to create type hierarchies. A type hierarchy is a set of
successive levels of increasingly specialized subtypes that derive from a common
ancestor object type, which is called a supertype. Derived subtypes inherit the features
of the parent object type and can extend the parent type definition. The specialized
types can add new attributes or methods, or redefine methods inherited from the
parent. The resulting type hierarchy provides a higher level of abstraction for
managing the complexity of an application model. For example, specialized types of
persons, such as a student type or a part-time student type with additional attributes
or methods, might be derived from a general person object type.

Figure 1–3 illustrates two subtypes, Student_t and Employee_t, created under
Person_t, and the PartTimeStudent_t, a subtype under Student_t.

Figure 1–3 A Type Hierarchy

See Also: "Collection Data Types" on page 5-1

See Also: "Inheritance in SQL Object Types" on page 2-13

Key Features of the Object-Relational Model

1-12 Oracle Database Object-Relational Developer's Guide

Using Type Evolution to Change an Existing Object Type
Type evolution enables you to modify, or evolve, an existing object type, even those
already used in tables. Type evolution works through the ALTER TYPE statement,
enabling you to propagate changes through all instances of the object type.

The ALTER TYPE statement checks for dependencies of the type to be altered, using
essentially the same validations as a CREATE TYPE statement. If a type or any of its
dependent types fails the type validations, the ALTER TYPE statement rolls back.

Metadata for all tables and columns that use an altered type are updated for the new
type definition so that data can be stored in the new format. Existing data can be
converted to the new format either all at once or piecemeal, as it is updated. In either
case, data is always presented in the new type definition even if it is still stored in the
format of the older one.

Language Binding Features of Oracle Objects
This section lists the key features of the object-relational model that are related to
languages and application programming interfaces (APIs).

SQL Object Extensions
To support object-related features, Oracle Database provides SQL extensions,
including DDL, to create, alter, or drop object types; to store object types in tables; and
to create, alter, or drop object views. There are DML and query extensions to support
object types, references, and collections. See "SQL and Object Types" on page 4-1.

PL/SQL Object Extensions
PL/SQL can operate on object types seamlessly. Thus, application developers can use
PL/SQL to implement logic and operations on user-defined types that execute in the
database server. See Chapter 3, "Using PL/SQL With Object Types" on page 3-1.

Java Support for Oracle Objects
Oracle Java VM is tightly integrated with Oracle Database and supports access to
Oracle Objects through object extensions to Java Database Connectivity (JDBC). This
provides dynamic SQL, and SQLJ, which provides static SQL. Thus, application
developers can use Java to implement logic and operations on object types that execute
in the database. You can map SQL types to existing Java classes to provide persistent
storage for Java objects. See "Java Object Storage" on page 4-12.

External Procedures
You can implement database functions, procedures, or member methods of an object
type in PL/SQL, Java, C, or .NET as external procedures. External procedures are best
suited for tasks that are more quickly or easily done in a low-level language such as C.
External procedures are always run in a safe mode outside the address space of the
database. Generic external procedures can be written that declare one or more
parameters to be of a system-defined generic type. Thus, an external procedure can
use the system-defined generic type to work with data of any built-in or user-defined
type.

See Also:

■ "Type Evolution" on page 8-6

■ "Considerations Related to Type Evolution" on page 9-25

See Also: Oracle Database JDBC Developer's Guide and Reference

Key Features of the Object-Relational Model

Introduction to Oracle Objects 1-13

Object Type Translator/JPublisher
Object Type Translator (OTT) and Oracle JPublisher provide client-side mappings to
object type schemas by using schema information from the Oracle data dictionary to
generate header files containing Java classes and C structures and indicators. You can
use these generated header files in host-language applications for transparent access to
database objects.

Client-Side Cache
Oracle Database provides an object cache for efficient access to persistent objects
stored in the database. Copies of objects can be brought into the object cache. Once the
data has been cached in the client, the application can traverse through these at
memory speed. Any changes made to objects in the cache can be committed to the
database by using the object extensions to Oracle Call Interface programmatic
interfaces.

Oracle Call Interface and Oracle C++ Call Interface
Oracle Call Interface (OCI) and Oracle C++ Call Interface provide a comprehensive
application programming interface for application and tool developers. Oracle Call
Interface provides a run-time environment with functions to connect to an Oracle
Database, and control transactions that access objects in the database. It allows
application developers to access and manipulate objects and their attributes in the
client-side object cache either navigationally, by traversing a graph of inter-connected
objects, or associatively by specifying the nature of the data through declarative SQL
DML. Oracle Call Interface provides a number of functions to access metadata about
object types defined in the database at run-time. See "Oracle Call Interface (OCI)" on
page 4-2 and "Oracle C++ Call Interface (OCCI)" on page 4-7.

Pro*C/C++ Object Extensions
The Oracle Pro*C/C++ precompiler provides an embedded SQL application
programming interface and offers a higher level of abstraction than Oracle Call
Interface. Like Oracle Call Interface, the Pro*C/C++ precompiler allows application
developers to use the Oracle client-side object cache and the Object Type Translator
Utility. Pro*C/C++ supports the use of C bind variables for Oracle object types.
Pro*C/C++ also provides simplified syntax to allocate and free objects of SQL types
and access them using SQL DML or the navigational interface. See "Oracle Call
Interface (OCI)" on page 4-2.

OO4O Object Extensions
Oracle Objects For OLE (OO4O) is a set of COM Automation interfaces and objects for
connecting to Oracle database servers, executing queries and managing the results.
Automation interfaces in OO4O provide easy and efficient access to Oracle Database
features and can be used from virtually any programming or scripting language that
supports the Microsoft COM Automation technology. This includes Visual Basic,
Visual C++, VBA in Excel, VBScript and JavaScript in IIS Active Server Pages. See
"Oracle Objects For OLE (OO4O)" on page 4-8.

.NET Object Extensions
Oracle Developer Tools for Visual Studio (ODT) and Oracle Data Provider for .NET
(ODP.NET) support .NET custom objects that map to Oracle object-relational data
types, collections, and REFs. ODT is a set of tools incorporated into a Visual Studio
integrated development environment, which allow managing these data types inside
the Oracle database. Through the ODT Custom Class Wizard, Oracle objects can be
automatically mapped to .NET custom types to ease data sharing between Oracle

Key Features of the Object-Relational Model

1-14 Oracle Database Object-Relational Developer's Guide

databases and .NET applications. Data access to these .NET custom types occur
through ODP.NET.

See Also:

■ Oracle Database Extensions for .NET Developer's Guide

■ Oracle Data Provider for .NET Developer's Guide

■ Oracle Developer Tools for Visual Studio Help

2

Basic Components of Oracle Objects 2-1

2 Basic Components of Oracle Objects

This chapter provides basic information about working with Oracle SQL objects. It
explains what object types and subprograms are, and describes how to create and
work with a hierarchy of object types that are derived from a shared root type and are
connected by inheritance.

This chapter contains these topics:

■ SQL Object Types and References

■ Object Methods

■ Inheritance in SQL Object Types

■ Functions and Operators Useful with Objects

SQL Object Types and References
This section describes SQL object types and references, including:

■ Null Objects and Attributes

■ Character Length Semantics

■ Constraints for Object Tables

■ Indexes for Object Tables

■ Triggers for Object Tables

■ Rules for REF Columns and Attributes

■ Name Resolution

■ Restriction on Using User-Defined Types with a Remote Database

You create Oracle SQL object types with the CREATE TYPE statement. A typical
example of object type creation is shown in Example 2–1 on page 2-2.

Note: Running Examples: In order to run examples in chapter 2, you
may need to drop any objects you created for Chapter 1.

See Also:

■ Oracle Database PL/SQL Language Reference for information on the
CREATE TYPE SQL statement

■ Oracle Database PL/SQL Language Reference for information on the
CREATE TYPE BODY SQL statement

SQL Object Types and References

2-2 Oracle Database Object-Relational Developer's Guide

Null Objects and Attributes
An object whose value is NULL is called atomically null. An atomically null object is
different from an object that has null values for all its attributes.

In an object with null values, a table column, object attribute, collection, or collection
element might be NULL if it has been initialized to NULL or has not been initialized at
all. Usually, a NULL value is replaced by an actual value later on. When all the
attributes are null, you can still change these attributes and call the object's
subprograms or methods. With an atomically null object, you can do neither of these
things.

Example 2–1 creates the contacts table and defines the person_typ object type and
two instances of this type.

Example 2–1 Inserting NULLs for Objects in a Table

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ));
/

CREATE OR REPLACE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ) IS
 BEGIN
 -- use the PUT_LINE procedure of the DBMS_OUTPUT package to display details
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(idno) || ' - ' || name || ' - ' || phone);
 END;
END;
/
CREATE TABLE contacts (
 contact person_typ,
 contact_date DATE);

INSERT INTO contacts VALUES (
 person_typ (NULL, NULL, NULL), '24 Jun 2003');

INSERT INTO contacts VALUES (
 NULL, '24 Jun 2003');

Two instances of person_typ are inserted into the table and give two different
results. In both cases, Oracle Database allocates space in the contacts table for a new
row and sets its DATE column to the value given. But in the first case, Oracle Database
allocates space for an object in the contact column and sets each of the object's
attributes to NULL. In the second case, Oracle Database sets the person_typ field
itself to NULL and does not allocate space for an object.

In some cases, you can omit checks for null values. A table row or row object cannot be
null. A nested table of objects cannot contain an element whose value is NULL.

A nested table or array can be null, so you do need to handle that condition. A null
collection is different from an empty one, one that has no elements.

See Also: "How PL/SQL Treats Uninitialized Objects" on page 3-3

SQL Object Types and References

Basic Components of Oracle Objects 2-3

Character Length Semantics
Lengths for character types CHAR and VARCHAR2 may be specified as a number of
characters, instead of bytes, in object attributes and collections even if some of the
characters consist of multiple bytes.

To specify character-denominated lengths for CHAR and VARCHAR2 attributes, you add
the qualifier char to the length specification.

Like CHAR and VARCHAR2, NCHAR and NVARCHAR2 may also be used as attribute types
in objects and collections. NCHAR and NVARCHAR2 are always implicitly measured in
terms of characters, so no char qualifier is used.

For example, the following statement creates an object with both a character-length
VARCHAR2 attribute and an NCHAR attribute:

Example 2–2 Creating the employee_typ Object Using a char Qualifier

CREATE OR REPLACE TYPE employee_typ AS OBJECT (
 name VARCHAR2(30 char),
 language NCHAR(10),
 phone VARCHAR2(20));
/

For CHAR and VARCHAR2 attributes whose length is specified without a char qualifier,
the NLS_LENGTH_SEMANTICS initialization parameter setting (CHAR or BYTE)
indicates the default unit of measure.

Constraints for Object Tables
You can define constraints on an object table just as you can on other tables. You can
define constraints on the leaf-level scalar attributes of a column object, with the
exception of REFs that are not scoped.

The following examples illustrate defining constraints.

Example 2–3 places an implicit PRIMARY KEY constraint on the office_id column of
the object table office_tab.

Example 2–3 Creating the office_tab Object Table with a Constraint

-- requires Ex. 2-1
CREATE OR REPLACE TYPE location_typ AS OBJECT (
 building_no NUMBER,
 city VARCHAR2(40));
/

CREATE OR REPLACE TYPE office_typ AS OBJECT (
 office_id VARCHAR(10),
 office_loc location_typ,
 occupant person_typ);
/

CREATE TABLE office_tab OF office_typ (
 office_id PRIMARY KEY);

The object type location_typ defined in Example 2–3 is the type of the dept_loc
column in the department_mgrs table in Example 2–4.

See Also: Oracle Database Globalization Support Guide for
information on character length semantics

SQL Object Types and References

2-4 Oracle Database Object-Relational Developer's Guide

Example 2–4 defines constraints on scalar attributes of the location_typ objects in
the table.

Example 2–4 Creating the department_mgrs Table with Multiple Constraints

-- requires Ex. 2-1 and 2-3
CREATE TABLE department_mgrs (
 dept_no NUMBER PRIMARY KEY,
 dept_name CHAR(20),
 dept_mgr person_typ,
 dept_loc location_typ,
 CONSTRAINT dept_loc_cons1
 UNIQUE (dept_loc.building_no, dept_loc.city),
 CONSTRAINT dept_loc_cons2
 CHECK (dept_loc.city IS NOT NULL));

INSERT INTO department_mgrs VALUES
 (101, 'Physical Sciences',
 person_typ(65,'Vrinda Mills', '1-1-650-555-0125'),
 location_typ(300, 'Palo Alto'));

Indexes for Object Tables
You can define indexes on an object table or on the storage table for a nested table
column or attribute just as you can on other tables. For an example of an index on a
nested table, see Example 5–5 on page 5-5.

You can define indexes on leaf-level scalar attributes of column objects, as shown in
Example 2–5. You can only define indexes on REF attributes or columns if the REF is
scoped. This example indexes city, which is a leaf-level scalar attribute of the column
object dept_addr.

Example 2–5 Creating an Index on an Object Type in a Table

-- requires Ex. 2-1, 2-3,
CREATE TABLE department_loc (
 dept_no NUMBER PRIMARY KEY,
 dept_name CHAR(20),
 dept_addr location_typ);

CREATE INDEX i_dept_addr1
 ON department_loc (dept_addr.city);

INSERT INTO department_loc VALUES
 (101, 'Physical Sciences',
 location_typ(300, 'Palo Alto'));
INSERT INTO department_loc VALUES
 (104, 'Life Sciences',
 location_typ(400, 'Menlo Park'));
INSERT INTO department_loc VALUES
 (103, 'Biological Sciences',
 location_typ(500, 'Redwood Shores'));

Wherever Oracle Database expects a column name in an index definition, you can also
specify a scalar attribute of a column object.

See Also: "Constraints on Objects" on page 9-25

SQL Object Types and References

Basic Components of Oracle Objects 2-5

Triggers for Object Tables
You can define triggers on an object table just as you can on other tables. You cannot
define a trigger on the storage table for a nested table column or attribute. You cannot
modify LOB values in a trigger body. Otherwise, there are no special restrictions on
using object types with triggers.

Example 2–6 defines a trigger on the office_tab table defined in "Constraints for
Object Tables" on page 2-3.

Example 2–6 Creating a Trigger on Objects in a Table

-- requires Ex. 2-1 and 2-3
CREATE TABLE movement (
 idno NUMBER,
 old_office location_typ,
 new_office location_typ);

CREATE TRIGGER trigger1
 BEFORE UPDATE
 OF office_loc
 ON office_tab
 FOR EACH ROW
 WHEN (new.office_loc.city = 'Redwood Shores')
 BEGIN
 IF :new.office_loc.building_no = 600 THEN
 INSERT INTO movement (idno, old_office, new_office)
 VALUES (:old.occupant.idno, :old.office_loc, :new.office_loc);
 END IF;
 END;
/
INSERT INTO office_tab VALUES
 ('BE32', location_typ(300, 'Palo Alto'),person_typ(280, 'John Chan',
 '415-555-0101'));

UPDATE office_tab set office_loc =location_typ(600, 'Redwood Shores')
 where office_id = 'BE32';

select * from office_tab;

select * from movement;

Rules for REF Columns and Attributes
In Oracle Database, a REF column or attribute can be unconstrained or constrained
using a SCOPE clause or a referential constraint clause. When a REF column is
unconstrained, it may store object references to row objects contained in any object
table of the corresponding object type.

Oracle Database does not ensure that the object references stored in such columns
point to valid and existing row objects. Therefore, REF columns may contain object
references that do not point to any existing row object. Such REF values are referred to
as dangling references.

See Also: "Using INSTEAD OF Triggers to Control Mutating and
Validation" on page 6-11

SQL Object Types and References

2-6 Oracle Database Object-Relational Developer's Guide

A SCOPE constraint can be applied to a specific object table. All the REF values stored
in a column with a SCOPE constraint point at row objects of the table specified in the
SCOPE clause. The REF values may, however, be dangling.

A REF column may be constrained with a REFERENTIAL constraint similar to the
specification for foreign keys. The rules for referential constraints apply to such
columns. That is, the object reference stored in these columns must point to a valid and
existing row object in the specified object table.

PRIMARY KEY constraints cannot be specified for REF columns. However, you can
specify NOT NULL constraints for such columns.

Name Resolution
Oracle SQL lets you omit qualifying table names in some relational operations. For
example, if dept_addr is a column in the department_loc table and old_office
is a column in the movement table, you can use the following:

SELECT * FROM department_loc WHERE EXISTS
 (SELECT * FROM movement WHERE dept_addr = old_office);

Oracle Database determines which table each column belongs to.

Using dot notation, you can qualify the column names with table names or table
aliases to make things more maintainable. For example:

Example 2–7 Using the Dot Notation for Name Resolution

-- requires Ex. 2-1, 2-3, 2-5, and 2-6
SELECT * FROM department_loc WHERE EXISTS
 (SELECT * FROM movement WHERE department_loc.dept_addr = movement.old_office);

SELECT * FROM department_loc d WHERE EXISTS
 (SELECT * FROM movement m WHERE d.dept_addr = m.old_office);

In some cases, object-relational features require you to specify the table aliases.

When Table Aliases Are Required
Using unqualified names can lead to problems. For example, if you add an
assignment column to depts and forget to change the query, Oracle Database
automatically recompiles the query so that the inner SELECT uses the assignment
column from the depts table. This situation is called inner capture.

To avoid inner capture and similar problems resolving references, Oracle Database
requires you to use a table alias to qualify any dot-notational reference to subprograms
or attributes of objects.

Use of a table alias is optional when referencing top-level attributes of an object table
directly, without using the dot notation. For example, the following statements define
two tables that contain the person_typ object type. person_obj_table is an object
table for objects of type person_typ, and contacts is a relational table that contains
a column of the object person_typ.

The following queries show some correct and incorrect ways to reference attribute
idno:

See Also:

■ "Using References to Row Objects" on page 1-7

■ "Substitution of REF Columns and Attributes" on page 2-26

SQL Object Types and References

Basic Components of Oracle Objects 2-7

#1 SELECT idno FROM person_obj_table; --Correct

#2 SELECT contact.idno FROM contacts; --Illegal
#3 SELECT contacts.contact.idno FROM contacts; --Illegal
#4 SELECT p.contact.idno FROM contacts p; --Correct

■ In #1, idno is the name of a column of person_obj_table. It references this
top-level attribute directly, without using the dot notation, so no table alias is
required.

■ In #2, idno is the name of an attribute of the person_typ object in the column
named contact. This reference uses the dot notation and so requires a table alias,
as shown in #4.

■ #3 uses the table name itself to qualify the reference. This is incorrect; a table alias
is required.

You must qualify a reference to an object attribute or subprogram with a table alias
rather than a table name even if the table name is itself qualified by a schema name.

For example, the following expression incorrectly refers to the HR schema,
department_loc table, dept_addr column, and city attribute of that column. The
expression is incorrect because department_loc is a table name, not an alias.

HR.department_loc.dept_addr.city

The same requirement applies to attribute references that use REFs.

Table aliases should uniquely pick out the same table throughout a query and should
not be the same as schema names that could legally appear in the query.

Restriction on Using User-Defined Types with a Remote Database
Objects or user-defined types (specifically, types declared with a SQL CREATE TYPE
statement, as opposed to types declared within a PL/SQL package) are currently
useful only within a single database. Oracle Database restricts use of a database link as
follows:

■ You cannot connect to a remote database to select, insert, or update a user-defined
type or an object REF on a remote table.

You can use the CREATE TYPE statement with the optional keyword OID to create
a user-specified object identifier (OID) that allows an object type to be used in
multiple databases. See the discussion on assigning an OID to an object type in the
Oracle Database Data Cartridge Developer's Guide.

■ You cannot use database links within PL/SQL code to declare a local variable of a
remote user-defined type.

Note: These statements are not related to other examples in this
chapter.

Note: Oracle recommends that you define table aliases in all
UPDATE, DELETE, and SELECT statements and subqueries and use
them to qualify column references whether or not the columns
contain object types.

Object Methods

2-8 Oracle Database Object-Relational Developer's Guide

■ You cannot convey a user-defined type argument or return value in a PL/SQL
remote procedure call.

Object Methods
Object methods, also known as subprograms, are functions or procedures that you can
declare in an object type definition to implement behavior that you want objects of that
type to perform. An application calls the subprograms to invoke the behavior.

Subprograms can be written in PL/SQL or virtually any other programming language.
Methods written in PL/SQL or Java are stored in the database. Methods written in
other languages, such as C, are stored externally.

This section focuses on declaring methods. See "Calling Object Constructors and
Methods" on page 3-4 for further discussion of invoking methods in PL/SQL.

This section describes these methods:

■ Member Methods

■ Static Methods

■ Constructor Methods

■ External Implemented Methods

Member Methods
Member methods provide an application with access to an object instance's data. You
define a member method in the object type for each operation that you want an object
of that type to be able to perform. Non-comparison member methods are declared as
either MEMBER FUNCTION or MEMBER PROCEDURE. Comparison methods use MAP
MEMBER FUNCTION or ORDER MEMBER FUNCTION as described in "Member Methods
for Comparing Objects" on page 2-9.

As an example of a member method, you might declare a function get_sum() that
sums the total cost of a purchase order's line items. The following line of code calls this
function for purchase order po and returns the amount into sum_line_items.

sum_line_items:= po.get_sum();

Dot notation specifies the current object and the method it calls. Parentheses are
required even if there are no parameters.

This section contains these topics:

■ SELF Parameters in Member Methods

■ Member Methods for Comparing Objects

SELF Parameters in Member Methods
Member methods have a built-in parameter named SELF that denotes the object
instance currently invoking the method.

SELF can be explicitly declared, but that is not necessary. It is simpler to write member
methods that reference the attributes and methods of SELF implicitly without the
SELF qualifier. In Example 2–8, the code and comments demonstrate method

Note: SQL requires parentheses for all subprogram calls, even those
that do not have arguments. This is not true for PL/SQL.

Object Methods

Basic Components of Oracle Objects 2-9

invocations that use an implicit SELF parameter rather than qualify the attributes hgt,
len, and wth.

Example 2–8 Creating a Member Method

-- Ex. 2-8 Creating a Member Method
CREATE OR REPLACE TYPE solid_typ AS OBJECT (
 len INTEGER,
 wth INTEGER,
 hgt INTEGER,
 MEMBER FUNCTION surface RETURN INTEGER,
 MEMBER FUNCTION volume RETURN INTEGER,
 MEMBER PROCEDURE display (SELF IN OUT NOCOPY solid_typ));
/

CREATE OR REPLACE TYPE BODY solid_typ AS
 MEMBER FUNCTION volume RETURN INTEGER IS
 BEGIN
 RETURN len * wth * hgt;
 -- RETURN SELF.len * SELF.wth * SELF.hgt; -- equivalent to previous line
 END;
 MEMBER FUNCTION surface RETURN INTEGER IS
 BEGIN -- not necessary to include SELF in following line
 RETURN 2 * (len * wth + len * hgt + wth * hgt);
 END;
 MEMBER PROCEDURE display (SELF IN OUT NOCOPY solid_typ) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Length: ' || len || ' - ' || 'Width: ' || wth
 || ' - ' || 'Height: ' || hgt);
 DBMS_OUTPUT.PUT_LINE('Volume: ' || volume || ' - ' || 'Surface area: '
 || surface);
 END;
END;
/

CREATE TABLE solids of solid_typ;
INSERT INTO solids VALUES(10, 10, 10);
INSERT INTO solids VALUES(3, 4, 5);
SELECT * FROM solids;
SELECT s.volume(), s.surface() FROM solids s WHERE s.len = 10;
DECLARE
 solid solid_typ;
BEGIN -- PL/SQL block for selecting a solid and displaying details
 SELECT VALUE(s) INTO solid FROM solids s WHERE s.len = 10;
 solid.display();
END;
/

SELF is always the first parameter passed to the method.

■ In member functions, if SELF is not declared, its parameter mode defaults to IN.

■ In member procedures, if SELF is not declared, its parameter mode defaults to IN
OUT. The default behavior does not include the NOCOPY compiler hint.

See also "Using SELF IN OUT NOCOPY with Member Procedures" on page 9-21.

Member Methods for Comparing Objects
To compare and order variables of an object type, you must specify a basis for
comparing them. The values of a scalar data type such as CHAR or REAL have a

Object Methods

2-10 Oracle Database Object-Relational Developer's Guide

predefined order, which allows them to be compared. But an object type, such as a
person_typ, which can have multiple attributes of various data types, has no
predefined axis of comparison. You have the option to define an map method or an
order method for comparing objects, but not both.

A map method maps object return values to scalar values and can order multiple
values by their position on the scalar axis. An order method directly compares values
for two particular objects.

Map Methods Map methods return values that can be used for comparing and sorting.
Return values can be any Oracle built-in data types (except LOBs and BFILEs) and
ANSI SQL types such as CHARACTER or REAL. See the specific sections in Oracle
Database SQL Quick Reference.

Generally, map methods perform calculations on the attributes of the object to produce
the return value.

Map methods are called automatically to evaluate such comparisons as obj_1 > obj_
2 and comparisons implied by the DISTINCT, GROUP BY, UNION, and ORDER BY
clauses which require sorting by rows.

Where obj_1 and obj_2 are two object variables that can be compared using a map
method map(), the comparison:

obj_1 > obj_2

is equivalent to:

obj_1.map() > obj_2.map()

Comparisons are similar for other relational operators.

The following example defines a map method area() that provides a basis for
comparing rectangle objects by their area:

Example 2–9 Creating a Map Method

CREATE OR REPLACE TYPE rectangle_typ AS OBJECT (
 len NUMBER,
 wid NUMBER,
 MAP MEMBER FUNCTION area RETURN NUMBER);
/

CREATE OR REPLACE TYPE BODY rectangle_typ AS
 MAP MEMBER FUNCTION area RETURN NUMBER IS
 BEGIN
 RETURN len * wid;
 END area;
END;
/

Example 2–10 Invoking a Map Method

DECLARE
 po rectangle_typ;

BEGIN
 po :=NEW rectangle_typ(10,5);

DBMS_OUTPUT.PUT_LINE('AREA:' || po.area()); -- prints AREA:50
 END;

Object Methods

Basic Components of Oracle Objects 2-11

/

A subtype can declare a map method only if its root supertype declares one.

See "Equal and Not Equal Comparisons" on page 5-19 for the use of map methods
when comparing collections that contain object types.

Order Methods Order methods make direct one-to-one object comparisons. Unlike map
methods, they cannot determine the order of a number of objects. They simply tell you
that the current object is less than, equal to, or greater than the object that it is being
compared to, based on the criterion used.

An order method is a function for an object (SELF), with one declared parameter that
is an object of the same type. The method must return either a negative number, zero,
or a positive number. This value signifies that the object (the implicit undeclared SELF
parameter) is less than, equal to, or greater than the declared parameter object.

As with map methods, an order method, if one is defined, is called automatically
whenever two objects of that type need to be compared.

Order methods are useful where comparison semantics may be too complex to use a
map method.

Example 2–11 shows an order method that compares locations by building number:

Example 2–11 Creating and Invoking an Order Method

DROP TYPE location_typ FORCE;
-- above necessary if you have previously created object
CREATE OR REPLACE TYPE location_typ AS OBJECT (
 building_no NUMBER,
 city VARCHAR2(40),
 ORDER MEMBER FUNCTION match (l location_typ) RETURN INTEGER);
/
CREATE OR REPLACE TYPE BODY location_typ AS
 ORDER MEMBER FUNCTION match (l location_typ) RETURN INTEGER IS
 BEGIN
 IF building_no < l.building_no THEN
 RETURN -1; -- any negative number will do
 ELSIF building_no > l.building_no THEN
 RETURN 1; -- any positive number will do
 ELSE
 RETURN 0;
 END IF;
 END;
END;
/

-- invoking match method
DECLARE
loc location_typ;
secloc location_typ;
a number;

BEGIN
 loc :=NEW location_typ(300, 'San Francisco');
 secloc :=NEW location_typ(200, 'Redwood Shores');
 a := loc.match(secloc);

DBMS_OUTPUT.PUT_LINE('order (1 is greater, -1 is lesser):' ||a); -- prints order:1
 END;

Object Methods

2-12 Oracle Database Object-Relational Developer's Guide

/

Guidelines for Comparison Methods

You can declare a map method or an order method but not both. For either method
type, you can compare objects using SQL statements and PL/SQL procedural
statements. However, if you do not declare one of these methods, you can only
compare objects in SQL statements, and only for equality or inequality. Two objects of
the same type are considered equal only if the values of their corresponding attributes
are equal.

When sorting or merging a large number of objects, use a map method, which maps all
the objects into scalars, then sorts the scalars. An order method is less efficient because
it must be called repeatedly (it can compare only two objects at a time). See
"Performance of Object Comparisons" on page 9-5.

Comparison Methods in Type Hierarchies

In a type hierarchy, if the root type (supertype) does not specify a map or an order
method, neither can the subtypes.

■ Map Method in a Type Hierarchy

If the root type specifies a map method, any of its subtypes can override it. If the
root type does not specify a map method, no subtype can specify one either.

■ Order Method in a Type Hierarchy

Only the root type can define an order method. If the root type does not define
one, its subtypes cannot add one.

Static Methods
Static methods are invoked on the object type, not its instances. You use a static
method for operations that are global to the type and do not need to reference the data
of a particular object instance. A static method has no SELF parameter.

Static methods are declared using STATIC FUNCTION or STATIC PROCEDURE.

You invoke a static method by using dot notation to qualify the method call with the
name of the object type, for example:

type_name.method()

See "Static Methods" on page 9-20 for information on design considerations.

Constructor Methods
A constructor method is a function that returns a new instance of the user-defined
type and sets up the values of its attributes. Constructor methods are either
system-defined or user-defined.

To invoke a constructor, the keyword NEW can be used, but is not required.

Note: Only a type that is not derived from another type can declare
an order method; a subtype cannot define one.

See Also: See Example 2–10 and "Calling Object Constructors and
Methods" on page 3-4

Inheritance in SQL Object Types

Basic Components of Oracle Objects 2-13

System-Defined Constructors
By default, the system implicitly defines a constructor function for all object types that
have attributes. This constructor is sometimes known as the attribute value
constructor.

For the person_typ object type defined in Example 2–1 on page 2-2 the name of the
constructor method is the name of the object type, as shown in the following
invocation:

person_typ (1, 'John Smith', '1-650-555-0135'),

User-Defined Constructors
You can also define constructor functions of your own to create and initialize
user-defined types. The default system-defined constructors (or attribute value
constructors) are convenient to use because they already exist, but user-defined
constructors have some important advantages with respect to type evolution. See
"Advantages of User-Defined Constructors" on page 8-17. See "Constructor Methods
for Collections" on page 5-2 for information on user-defined constructors for
collections.

Literal Invocation of a Constructor Method
A literal invocation of a constructor method is a call to the constructor method in
which arguments are either literals (as opposed to bind variables), or further literal
invocations of constructor methods. For example:

CREATE TABLE people_tab OF person_typ;

INSERT INTO people_tab VALUES (
 person_typ(101, 'John Smith', '1-650-555-0135'));

External Implemented Methods
You can use PL/SQL to invoke external subprograms that have been written in other
languages. This provides access to the strengths and capabilities of those languages.

Inheritance in SQL Object Types
SQL object inheritance is based on a family tree of object types that forms a type
hierarchy. The type hierarchy consists of a parent object type, called a supertype, and
one or more levels of child object types, called subtypes, which are derived from the
parent.

Inheritance is the mechanism that connects subtypes in a hierarchy to their supertypes.
Subtypes automatically inherit the attributes and methods of their parent type. Also,
the inheritance link remains alive. Subtypes automatically acquire any changes made
to these attributes or methods in the parent: any attributes or methods updated in a
supertype are updated in subtypes as well.

See Also: Chapter 4, "Object Support in Oracle Programming
Environments"

Note: Oracle only supports single inheritance. Therefore, a subtype
can derive directly from only one supertype, not more than one.

Inheritance in SQL Object Types

2-14 Oracle Database Object-Relational Developer's Guide

With object types in a type hierarchy, you can model an entity such as a customer, and
also define different specializingd subtypes of customers under the original type. You
can then perform operations on a hierarchy and have each type implement and
execute the operation in a special way.

The topics described in this section are:

■ Supertypes and Subtypes

■ Defining FINAL and NOT FINAL Types and Methods

■ Creating Subtypes

■ Declaring Types and Methods NOT INSTANTIABLE

■ Overloading and Overriding Methods

■ Dynamic Method Dispatch

■ Substituting Types in a Type Hierarchy

■ Column and Row Substitutability

■ Storing Newly Created Subtypes in Substitutable Columns

■ Dropping Subtypes After Creating Substitutable Columns

■ Turning Off Substitutability in a New Table

■ Constraining Substitutability

■ Modifying Substitutability

■ Restrictions on Modifying Substitutability

■ Assignments Across Types

Supertypes and Subtypes
A subtype can be derived from a supertype either directly or indirectly through
intervening levels of other subtypes. A supertype can have multiple sibling subtypes,
but a subtype can have at most one direct parent supertype (single inheritance).

Figure 2–1 Supertypes and Subtypes in Type Hierarchy

To derive a subtype from a supertype, define a specialized variant of the supertype
that adds new attributes and methods to the set inherited from the parent or redefine
(override) the inherited methods. For example, from a person_typ object type you
might derive the specialized types student_typ and employee_typ. Each of these

A
Supertype of all

B
Subtype of A;
supertype of C

D
Subtype of A;

C
Subtype of B

Inheritance in SQL Object Types

Basic Components of Oracle Objects 2-15

subtypes is still a person_typ, but a special kind of person. What distinguishes a
subtype from its parent supertype is some change made to the attributes or methods
that the subtype received from its parent.

Unless a subtype redefines an inherited method, it always contains the same core set of
attributes and methods that are in the parent type, plus any attributes and methods
that it adds. If a person_typ object type has the three attributes idno, name, and
phone and the method get_idno(), then any object type that is derived from
person_typ will have these same three attributes and a method get_idno(). If the
definition of person_typ changes, so do the definitions of any subtypes.

Subtypes are created using the keyword UNDER as follows:

CREATE TYPE student_typ UNDER person_typ

You can specialize the attributes or methods of a subtype in these ways:

■ Add new attributes that its parent supertype does not have.

For example, you might specialize student_typ as a special kind of person_
typ by adding an attribute for major. A subtype cannot drop or change the type
of an attribute it inherited from its parent; it can only add new attributes.

■ Add entirely new methods that the parent does not have.

■ Change the implementation of some of the methods that a subtype inherits so that
the subtype's version executes different code from the parent's.

For example, a ellipse object might define a method calculate(). Two subtypes
of ellipse_typ, circle_typ and sphere_typ, might each implement this
method in a different way.

The inheritance relationship between a supertype and its subtypes is the source of
much of the power of objects and much of their complexity. Being able to change a
method in a supertype and have the change take effect in all the subtypes downstream
just by recompiling is very powerful. But this same capability means that you have to
consider whether or not you want to allow a type to be specialized or a method to be
redefined. Similarly, for a table or column to be able to contain any type in a hierarchy
is also powerful, but you must decide whether or not to allow this in a particular case.
Also, you may need to constrain DML statements and queries so that they pick out just
the range of types that you want from the type hierarchy.

Defining FINAL and NOT FINAL Types and Methods
For an object type to be inheritable, the object type definition must specify that it is
inheritable. Then subtypes can be derived from it. For a method, the definition must
indicate whether or not it can be overridden The keywords FINAL or NOT FINAL are
used for both types and methods.

In order for an object type to be inheritable, thus allowing subtypes to be derived from
it, the object definition must specify this. For a method, the definition must indicate
whether or not it can be overridden The keywords FINAL or NOT FINAL are used for
both types and methods.

■ For a type FINAL, (default) means that no subtypes can be derived from it. NOT
FINAL means subtypes can be derived.

See Also: Example 2–15 on page 2-17 for a complete example

See Also: "Overloading and Overriding Methods" on page 2-21

Inheritance in SQL Object Types

2-16 Oracle Database Object-Relational Developer's Guide

■ For a method, FINAL means that subtypes cannot override it by providing their
own implementation. NOT FINAL (default) means that you can override the
method of the supertype.

Definitions of object types and method includes the NOT FINAL or FINAL keywords in
the type and method declarations, as shown in Example 2–12 and Example 2–13.

Example 2–12 Creating the person_typ Object Type as NOT FINAL

DROP TYPE person_typ FORCE;
-- above necessary if you have previously created object

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
NOT FINAL;
/

Example 2–12 declares person_typ to be a not final type and therefore subtypes of
person_typ can be defined.

Example 2–13 creates a not final object type that contains a final member function.

Example 2–13 Creating an Object Type as NOT FINAL with a FINAL Member Function

DROP TYPE person_typ FORCE;
-- above necessary if you have previously created object

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 FINAL MAP MEMBER FUNCTION get_idno RETURN NUMBER)
NOT FINAL;
/

You can change a final type to a not final type and vice versa with an ALTER TYPE
statement. For example, the following statement changes person_typ to a final type:

ALTER TYPE person_typ FINAL;

You can only alter a type from NOT FINAL to FINAL if the target type has no subtypes.

Creating Subtypes
You create a subtype using a CREATE TYPE statement that specifies the immediate
parent of the subtype with the UNDER keyword.

Creating a Parent or Supertype Object
Example 2–14 provides a parent or supertype person_typ object to demonstrate
subtype definitions in Example 2–15, Example 2–18, and Example 2–19.

Note the show() in Example 2–14. In the subtype examples that follow, the show()
function of the parent type is overridden to specifications for each subtype using the
OVERRIDING keyword.

Example 2–14 Creating the Parent or Supertype person_typ Object

DROP TYPE person_typ FORCE;

Inheritance in SQL Object Types

Basic Components of Oracle Objects 2-17

-- if created
CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER FUNCTION show RETURN VARCHAR2)
 NOT FINAL;
/

CREATE OR REPLACE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
-- function that can be overriden by subtypes
 MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN 'Id: ' || TO_CHAR(idno) || ', Name: ' || name;
 END;

END;
/

Creating a Subtype Object
A subtype inherits the following:

■ All the attributes declared in or inherited by the supertype.

■ Any methods declared in or inherited by supertype.

Example 2–15 defines the student_typ object as a subtype of person_typ, which
inherits all the attributes declared in or inherited by person_typ and any methods
inherited by or declared in person_typ.

Example 2–15 Creating a student_typ Subtype Using the UNDER Clause

-- requires Ex. 2-14
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30),
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2)
 NOT FINAL;
/

CREATE TYPE BODY student_typ AS
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN (self AS person_typ).show || ' -- Major: ' || major ;
 END;

END;
/

The statement that defines student_typ specializes person_typ by adding two
new attributes, dept_id and major and overrides the show method. New attributes
declared in a subtype must have names that are different from the names of any
attributes or methods declared in any of its supertypes, higher up in its type hierarchy.

Inheritance in SQL Object Types

2-18 Oracle Database Object-Relational Developer's Guide

Generalized Invocation
Generalized invocation provides a mechanism to invoke a method of a supertype or a
parent type, rather than the specific subtype member method. Example 2–15
demonstrates this using the following syntax:

 (SELF AS person_typ).show

The student_typ show method first calls the person_typ show method to do the
common actions and then does its own specific action, which is to append
'--Major:' to the value returned by the person_typ show method. This way,
overriding subtype methods can call corresponding overriding parent type methods to
do the common actions before doing their own specific actions.

Methods are invoked just like normal member methods, except that the type name
after AS should be the type name of the parent type of the type that the expression
evaluates to.

In Example 2–16, there is an implicit SELF argument just like the implicit self
argument of a normal member method invocation. In this case, it invokes the
person_typ show method rather than the specific student_typ show method.

Example 2–16 Using Generalized Invocation

-- Requires Ex. 2-14 and 2-15
DECLARE
 myvar student_typ := student_typ(100, 'Sam', '6505556666', 100, 'Math');
 name VARCHAR2(100);
BEGIN
 name := (myvar AS person_typ).show; --Generalized invocation
END;
/

Generalized expression, like member method invocation, is also supported when a
method is invoked with an explicit self argument.

Example 2–17 Using Generalized Expression

-- Requires Ex. 2-14 and 2-15
DECLARE
 myvar2 student_typ := student_typ(101, 'Sam', '6505556666', 100, 'Math');
 name2 VARCHAR2(100);
BEGIN
 name2 := person_typ.show((myvar2 AS person_typ)); -- Generalized expression
END;
/

Double parentheses are used in this example because ((myvar2 AS person_typ)) is
both an expression that must be resolved and the parameter of the show function.

Note: Constructor methods cannot be invoked using this syntax.
Also, the type name that appears after AS in this syntax should be one
of the parent types of the type of the expression for which method is
being invoked.

This syntax can only be used to invoke corresponding overriding
member methods of the parent types.

Inheritance in SQL Object Types

Basic Components of Oracle Objects 2-19

Multiple Subtypes
A type can have multiple child subtypes, and these subtypes can also have subtypes.
Example 2–18 creates another subtype employee_typ under person_typ in
addition to the already existing subtype, student_typ, created in Example 2–15.

Example 2–18 Creating an employee_typ Subtype Using the UNDER Clause

-- requires Ex. 2-14

DROP TYPE employee_typ FORCE;
-- if previously created
CREATE OR REPLACE TYPE employee_typ UNDER person_typ (
 emp_id NUMBER,
 mgr VARCHAR2(30),
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2);
/

CREATE OR REPLACE TYPE BODY employee_typ AS
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN (SELF AS person_typ).show|| ' -- Employee Id: '
 || TO_CHAR(emp_id) || ', Manager: ' || mgr ;
 END;

END;
/

A subtype can be defined under another subtype. Again, the new subtype inherits all
the attributes and methods that its parent type has, both declared and inherited.
Example 2–19 defines a new subtype part_time_student_typ under student_
typ created in Example 2–15. The new subtype inherits all the attributes and methods
of student_typ and adds another attribute, number_hours.

Example 2–19 Creating a part_time_student_typ Subtype Using the UNDER Clause

CREATE TYPE part_time_student_typ UNDER student_typ (
 number_hours NUMBER,
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2);
/

CREATE TYPE BODY part_time_student_typ AS
 OVERRIDING MEMBER FUNCTION show RETURN VARCHAR2 IS
 BEGIN
 RETURN (SELF AS person_typ).show|| ' -- Major: ' || major ||
 ', Hours: ' || TO_CHAR(number_hours);
 END;

END;
/

Creating a Table that Contains Supertype and Subtype Objects
You can create a table that contains supertype and subtype instances and populate the
table as shown with the person_obj_table in Example 2–20.

Example 2–20 Inserting Values into Substitutable Rows of an Object Table

CREATE TABLE person_obj_table OF person_typ;

Inheritance in SQL Object Types

2-20 Oracle Database Object-Relational Developer's Guide

INSERT INTO person_obj_table
 VALUES (person_typ(12, 'Bob Jones', '650-555-0130'));

INSERT INTO person_obj_table
 VALUES (student_typ(51, 'Joe Lane', '1-650-555-0140', 12, 'HISTORY'));

INSERT INTO person_obj_table
 VALUES (employee_typ(55, 'Jane Smith', '1-650-555-0144',
 100, 'Jennifer Nelson'));

INSERT INTO person_obj_table
 VALUES (part_time_student_typ(52, 'Kim Patel', '1-650-555-0135', 14,
 'PHYSICS', 20));

You can call the show() function for the supertype and subtypes in the table with the
following:

SELECT p.show() FROM person_obj_table p;

The output is similar to:

Id: 12, Name: Bob Jones
Id: 51, Name: Joe Lane -- Major: HISTORY
Id: 55, Name: Jane Smith -- Employee Id: 100, Manager: Jennifer Nelson
Id: 52, Name: Kim Patel -- Major: PHYSICS, Hours: 20

Note that data that the show() method displays depends on whether the object is a
supertype or subtype, and if the show() method of the subtype is overridden. For
example, Bob Jones is a person_typ, that is, an supertype. Only his name and Id are
displayed. For Joe Lane, a student_typ, his name and Id are provided by the
show() function of the supertype, and his major is provided by the overridden
show() function of the subtype.

Declaring Types and Methods NOT INSTANTIABLE
Types and methods can be declared NOT INSTANTIABLE when they are created.

■ NOT INSTANTIABLE Types

If a type is not instantiable, you cannot instantiate instances of that type. There are
no constructors (default or user-defined) for it. You might use this with types
intended to serve solely as supertypes from which specialized subtypes are
instantiated.

■ NOT INSTANTIABLE Methods

A non-instantiable method serves as a placeholder. It is declared but not
implemented in the type. You might define a non-instantiable method when you
expect every subtype to override the method in a different way. In this case, there
is no point in defining the method in the supertype.

A type that contains a non-instantiable method must itself be declared not instantiable,
as shown in Example 2–21.

Example 2–21 Creating an Object Type that is NOT INSTANTIABLE

DROP TYPE person_typ FORCE;
-- if previously created
CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,

Inheritance in SQL Object Types

Basic Components of Oracle Objects 2-21

 name VARCHAR2(30),
 phone VARCHAR2(20),
 NOT INSTANTIABLE MEMBER FUNCTION get_idno RETURN NUMBER)
 NOT INSTANTIABLE NOT FINAL;
/

If a subtype does not provide an implementation for every inherited non-instantiable
method, the subtype itself, like the supertype, must be declared not instantiable. A
non-instantiable subtype can be defined under an instantiable supertype.

You can alter an instantiable type to a non-instantiable type and vice versa with an
ALTER TYPE statement. In the following example, the ALTER TYPE statement makes
person_typ instantiable:

Example 2–22 Altering an Object Type to INSTANTIABLE

CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
 NOT INSTANTIABLE NOT FINAL;
/
ALTER TYPE person_typ INSTANTIABLE;

You can alter an instantiable type to a non-instantiable type only if the type has no
columns, views, tables, or instances that reference that type, either directly, or
indirectly through another type or subtype.

You cannot declare a non-instantiable type to be FINAL, which would be pointless
anyway.

Overloading and Overriding Methods
A subtype can redefine methods it inherits, and it can also add new methods,
including methods with the same name.

See the examples in "Creating Subtypes" on page 2-16 and Example 8–10 on page 8-17.

Overloading Methods
Adding new methods that have the same names as inherited methods to the subtype is
called overloading. When they exist in the same user-defined type, methods that have
the same name, but different signatures are called overloads. A method signature
consists of the method's name and the number, types, and the order of the method's
formal parameters, including the implicit self parameter.

Overloading is useful when you want to provide a variety of ways of doing
something. For example, an ellipse object might overload a calculate() method
with another calculate() method to enable calculation of a different shape.

The compiler uses the method signatures to determine which method to call when a
type has several overloaded methods.

In the following pseudocode, subtype circle_typ creates an overload of
calculate():

CREATE TYPE ellipse_typ AS OBJECT (...,
MEMBER PROCEDURE calculate(x NUMBER, x NUMBER),

) NOT FINAL;

Inheritance in SQL Object Types

2-22 Oracle Database Object-Relational Developer's Guide

CREATE TYPE circle_typ UNDER ellipse_typ (...,
MEMBER PROCEDURE calculate(x NUMBER),

...);

The circle_typ contains two versions of calculate(). One is the inherited
version with two NUMBER parameters and the other is the newly created method with
one NUMBER parameter.

Overriding and Hiding Methods
Redefining an inherited method to customize its behavior in a subtype is called
overriding, in the case of member methods, or hiding, in the case of static methods.

Unlike overloading, you do not create a new method, just redefine an existing one,
using the keyword OVERRIDING.

Overriding and hiding redefine an inherited method to make it do something different
in the subtype. For example, a subtype circle_typ derived from a ellipse_typ
supertype might override a member method calculate() to customize it
specifically for calculating the area of a circle. For examples of overriding methods, see
"Creating Subtypes" on page 2-16.

Overriding and hiding are similar in that, in either case, the version of the method
redefined in the subtype eclipses the original version of the same name and signature
so that the new version is executed rather than the original one whenever a subtype
instance invokes the method. If the subtype itself has subtypes, these inherit the
redefined method instead of the original version.

With overriding, the system relies on type information contained in the member
method's implicit self argument to dynamically choose the correct version of the
method to execute. With hiding, the correct version is identified at compile time, and
dynamic dispatch is not necessary. See "Dynamic Method Dispatch" on page 2-23.

To override or hide a method, you must preserve its signature. Overloads of a method
all have the same name, so the compiler uses the signature of the subtype's method to
identify the particular version in the supertype that is superseded.

You signal the override with the OVERRIDING keyword in the CREATE TYPE BODY
statement. This is not required when a subtype hides a static method.

In the following pseudocode, the subtype signals that it is overriding method
calculate():

CREATE TYPE ellipse_typ AS OBJECT (...,
MEMBER PROCEDURE calculate(),
FINAL MEMBER FUNCTION function_mytype(x NUMBER)...

) NOT FINAL;

CREATE TYPE circle_typ UNDER ellipse_typ (...,
OVERRIDING MEMBER PROCEDURE calculate(),

...);

For a diagram of this hierarchy, see Figure 2–2 on page 2-23.

Restrictions on Overriding Methods
The following are restrictions on overriding methods:

■ Only methods that are not declared to be final in the supertype can be overridden.

Inheritance in SQL Object Types

Basic Components of Oracle Objects 2-23

■ Order methods may appear only in the root type of a type hierarchy: they may not
be redefined (overridden) in subtypes.

■ A static method in a subtype may not redefine a member method in the supertype.

■ A member method in a subtype may not redefine a static method in the supertype.

■ If a method being overridden provides default values for any parameters, then the
overriding method must provide the same default values for the same parameters.

Dynamic Method Dispatch
Dynamic method dispatch refers to the way that method calls are dispatched to the
nearest implementation at run time, working up the type hierarchy from the current or
specified type. This feature is only available when overriding member methods and
does not apply to static methods.

With method overriding, a type hierarchy can define multiple implementations of the
same method. In the following hierarchy of types ellipse_typ, circle_typ, and
sphere_typ, each type might define a calculate() method differently.

Figure 2–2 Hierarchy of Types

When one of these methods is invoked, the type of the object instance that invokes it
determines which implementation of the method to use. The call is then dispatched to
that implementation for execution. This process of selecting a method implementation
is called virtual or dynamic method dispatch because it is done at run time, not at
compile time.

The method call works up the type hierarchy: never down. If the call invokes a
member method of an object instance, the type of that instance is the current type, and
the implementation defined or inherited by that type is used. If the call invokes a static
method of a type, the implementation defined or inherited by that specified type is
used.

Substituting Types in a Type Hierarchy
When you work with types in a type hierarchy, sometimes you need to work at the
most general level, for example, to select or update all persons. But at other times, you
need to select or update only a specific subtype such as a student, or only persons who
are not students.

The (polymorphic) ability to select all persons and get back not only objects whose
declared type is person_typ but also objects whose declared subtype is student_
typ or employee_typ is called substitutability. A supertype is substitutable if one of

See Also: Oracle Database PL/SQL Language Reference for
information on how subprograms calls are resolved

ellipse_typ

circle_typ

sphere_typ

Base type

Subtype of
ellipse_type

Subtype of
circle_type

Inheritance in SQL Object Types

2-24 Oracle Database Object-Relational Developer's Guide

its subtypes can substitute or stand in for it in a variable or column whose declared
type is the supertype.

In general, types are substitutable. Object attributes, collection elements and REFs are
substitutable. An attribute defined as a REF, type, or collection of type person_typ
can hold a REF to an instance of, or instances of an instance of person_typ, or an
instance of any subtype of person_typ.

This seems expected, given that a subtype is, after all, just a specialized kind of one of
its supertypes. Formally, though, a subtype is a type in its own right: it is not the same
type as its supertype. A column that holds all persons, including all persons who are
students and all persons who are employees, actually holds data of multiple types.

In principle, object attributes, collection elements and REFs are always substitutable:
there is no syntax at the level of the type definition to constrain their substitutability to
some subtype. You can, however, turn off or constrain substitutability at the storage
level, for specific tables and columns. See "Turning Off Substitutability in a New Table"
on page 2-27 and "Constraining Substitutability" on page 2-28.

Column and Row Substitutability
Object type columns and object-type rows in object tables are substitutable, and so are
views: a column or row of a specific type can contain instances of that type and any of
its subtypes.

For example, consider the person_typ type hierarchy such as the one introduced in
Example 2–14. You can create an object table of person_typ that contains rows of all
types. To do this, you insert an instance of a given type into an object table using the
constructor for that type in the VALUES clause of the INSERT statement as shown in
Example 2–20.

Similarly, Example 2–23 shows that a substitutable column of type person_typ can
contain instances of all three types, in a relational table or view. The example recreates
person, student, and part-time student objects from that type hierarchy and inserts
them into the person_typ column contact.

Example 2–23 Inserting Values into Substitutable Columns of a Table

DROP TYPE person_typ FORCE;
-- if previously created

DROP TYPE student_typ FORCE; -- if previously created

DROP TYPE part_time_student_typ FORCE; -- if previously created
DROP TABLE contacts; if previously created
CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
 NOT FINAL;
/
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30))
 NOT FINAL;
/
CREATE TYPE part_time_student_typ UNDER student_typ (
 number_hours NUMBER);
/
CREATE TABLE contacts (

Inheritance in SQL Object Types

Basic Components of Oracle Objects 2-25

 contact person_typ,
 contact_date DATE);

INSERT INTO contacts
 VALUES (person_typ (12, 'Bob Jones', '650-555-0130'), '24 Jun 2003');

INSERT INTO contacts
 VALUES (student_typ(51, 'Joe Lane', '1-650-555-0178', 12, 'HISTORY'),
 '24 Jun 2003');

INSERT INTO contacts
 VALUES (part_time_student_typ(52, 'Kim Patel', '1-650-555-0190', 14,
 'PHYSICS', 20), '24 Jun 2003');

A newly created subtype can be stored in any substitutable tables and columns of its
supertype, including tables and columns that existed before the subtype was created.

In general, you can access attributes using dot notation. To access attributes of a
subtype of a row or column's declared type, you can use the TREAT function. For
example:

SELECT TREAT(contact AS student_typ).major FROM contacts;

See "TREAT" on page 2-36.

Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows
The OBJECT_VALUE and OBJECT_ID pseudocolumns allow you to access and identify
the value and object identifier (OID) of a substitutable row in an object table as shown
in Example 2–24.

Example 2–24 Using OBJECT_VALUE and OBJECT_ID

DROP TABLE person_obj_table; -- required if previously created
CREATE TABLE person_obj_table OF person_typ;

INSERT INTO person_obj_table
 VALUES (person_typ(20, 'Bob Jones', '650-555-0130'));

SELECT p.object_id, p.object_value FROM person_obj_table p;

Subtypes with Attributes of a Supertype
A subtype can have an attribute whose type is the type of a supertype. For example:

Example 2–25 Creating a Subtype with a Supertype Attribute

-- requires Ex 2-22
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30),
 advisor person_typ);
/

However, columns of such types are not substitutable. Similarly, a subtype can have a
collection attribute whose element type is one of its supertypes, but, again, columns of

See Also: Oracle Database SQL Language Reference for further
information on these pseudocolumns

Inheritance in SQL Object Types

2-26 Oracle Database Object-Relational Developer's Guide

such types are not substitutable. For example, if student_typ had a nested table or
varray of person_typ, the student_typ column would not be substitutable.

You can, however, define substitutable columns of subtypes that have REF attributes
that reference supertypes. For example, the composite_category_typ subtype
shown in Example 2–26 contains the subcategory_ref_list nested table. This
table contains subcategory_ref_list_typ which are REFs to category_typ.
The subtype was created as follows:

Example 2–26 Defining Columns of Subtypes that have REF Attributes

-- not to be executed
CREATE TYPE subcategory_ref_list_typ
AS TABLE OF REF category_typ;

/

CREATE TYPE composite_category_typ
UNDER category_typ
(
subcategory_ref_list subcategory_ref_list_typ

...

See "Turning Off Substitutability in a New Table" on page 2-27.

Substitution of REF Columns and Attributes
REF columns and attributes are substitutable in both views and tables. For example, in
either a view or a table, a column declared to be REF person_typ can hold references
to instances of person_typ or any of its subtypes.

Substitution of Collection Elements
Collection elements are substitutable in both views and tables. For example, a nested
table of person_typ can contain object instances of person_typ or any of its
subtypes.

Storing Newly Created Subtypes in Substitutable Columns
If you create a subtype, any table that already has substitutable columns of the
supertype can store the new subtype as well. This means that your options for creating
subtypes are affected by the existence of such tables. If such a table exists, you can only
create subtypes that are substitutable, that is, subtypes that do not violate table limits
or constraints.

The following example creates a person_typ and then shows several attempts to
create a subtype student_typ under person_typ.

Example 2–27 Creating a Subtype After Creating Substitutable Columns

DROP TYPE person_typ FORCE;
DROP TABLE person_obj_table;
DROP TYPE student_typ;
-- perform above drops if objects/tables created
CREATE OR REPLACE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
 NOT FINAL;
/

Inheritance in SQL Object Types

Basic Components of Oracle Objects 2-27

CREATE TABLE person_obj_table (p person_typ);

The following statement fails because student_typ has a supertype attribute, and
table person_obj_table has a substitutable column p of the supertype.

CREATE TYPE student_typ UNDER person_typ (-- incorrect CREATE subtype
 advisor person_typ);
/

The next attempt succeeds. This version of the student_typ subtype is substitutable.
Oracle Database automatically enables table person_obj_table to store instances of
this new type.

CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30));
/
INSERT INTO person_obj_table
 VALUES (student_typ(51, 'Joe Lane', '1-650-555-0178', 12, 'HISTORY'));

Dropping Subtypes After Creating Substitutable Columns
When you drop a subtype with the VALIDATE option, it checks that no instances of the
subtype are stored in any substitutable column of the supertype. If there are no such
instances, the DROP operation completes.

The following statement fails because an instance of student_typ is stored in
substitutable column p of table person_obj_table:

DROP TYPE student_typ VALIDATE -- incorrect: an instance still exists ;

To drop the type, first delete any of its instances in substitutable columns of the
supertype:

DELETE FROM person_obj_table WHERE p IS OF (student_typ);

DROP TYPE student_typ VALIDATE;

Turning Off Substitutability in a New Table
When you create a table, you can turn off all substitutability on a column or attribute,
including embedded attributes and collections nested to any level, with the clause NOT
SUBSTITUTABLE AT ALL LEVELS.

In the following example, the clause confines the column office of a relational table
to storing only office_typ instances and disallows any subtype instances:

Example 2–28 Turning off Substitutability When Creating a Table

DROP TYPE location_typ FORCE; -- required if previously created
DROP TYPE office_typ FORCE; -- required if previously created
CREATE OR REPLACE TYPE location_typ AS OBJECT (
 building_no NUMBER,
 city VARCHAR2(40));
/

CREATE TYPE people_typ AS TABLE OF person_typ;
/

See Also: Oracle Database PL/SQL Language Reference for further
information on DROP and VALIDATE

Inheritance in SQL Object Types

2-28 Oracle Database Object-Relational Developer's Guide

CREATE TYPE office_typ AS OBJECT (
 office_id VARCHAR(10),
 location location_typ,
 occupant person_typ)
 NOT FINAL;
/

CREATE TABLE dept_office (
 dept_no NUMBER,
 office office_typ)
 COLUMN office NOT SUBSTITUTABLE AT ALL LEVELS;

With object tables, the clause can be applied to the table as a whole, such as:

DROP TABLE office_tab; -- if previously created
CREATE TABLE office_tab OF office_typ
 NOT SUBSTITUTABLE AT ALL LEVELS;

The clause can also turn off substitutability in a particular column, that is, for a
particular attribute of the object type of the table:

DROP TABLE office_tab; -- if previously created
CREATE TABLE office_tab OF office_typ
 COLUMN occupant NOT SUBSTITUTABLE AT ALL LEVELS;

You can specify that the element type of a collection is not substitutable using syntax
such as the following:

DROP TABLE people_tab;
-- required if previously created
CREATE TABLE people_tab (
 people_column people_typ)
 NESTED TABLE people_column
 NOT SUBSTITUTABLE AT ALL LEVELS STORE AS people_column_nt;

There is no mechanism to turn off substitutability for REF columns.

You can use either NOT SUBSTITUTABLE AT ALL LEVELS or IS OF type to constrain
an object column, but you cannot use both.

Constraining Substitutability
You can impose a constraint that limits the range of subtypes permitted in an object
column or attribute to a particular subtype in the declared type's hierarchy. You do this
using an IS OF type constraint.

The following statement creates a table of office_typ in which occupants are
constrained to just those persons who are employees:

Example 2–29 Constraining Substitutability When Creating a Table

DROP TABLE office_tab;
-- if previously created
CREATE TABLE office_tab OF office_typ
 COLUMN occupant IS OF (ONLY employee_typ);

Although the type office_typ allows authors to be of type person_typ, the
column declaration imposes a constraint to store only instances of employee_typ.

Inheritance in SQL Object Types

Basic Components of Oracle Objects 2-29

You can only use the IS OF type operator to constrain row and column objects to a
single subtype (not several), and you must use the ONLY keyword, as in the preceding
example.

You can use either IS OF type or NOT SUBSTITUTABLE AT ALL LEVELS to constrain
an object column, but you cannot use both.

Modifying Substitutability
In an existing table, you can change an object column from SUBSTITUTABLE to NOT
SUBSTITUTABLE (or from NOT SUBSTITUTABLE to SUBSTITUTABLE) by using an
ALTER TABLE statement. To do so, you specify the clause [NOT] SUBSTITUTABLE AT
ALL LEVELS for the particular column.

You can modify substitutability only for a specific column, not for an object table as a
whole.

The following statement makes the column office substitutable:

Example 2–30 Modifying Substitutability in a Table

-- Requires Ex. 2-28
ALTER TABLE dept_office
 MODIFY COLUMN office SUBSTITUTABLE AT ALL LEVELS;

The following statement makes the column not substitutable. Notice that it also uses
the FORCE keyword. This keyword causes any hidden columns containing typeid
information or data for subtype attributes to be dropped:

ALTER TABLE dept_office
 MODIFY COLUMN office NOT SUBSTITUTABLE AT ALL LEVELS FORCE;

If you do not use the FORCE keyword to make a column not substitutable, the column
and all attributes of the type must be FINAL or the ALTER TABLE statement will fail.

A VARRAY column can be modified from SUBSTITUTABLE to NOT SUBSTITUTABLE
only if the element type of the varray is final itself and has no embedded types (in its
attributes or in their attributes, and so on) that are not final.

See "Hidden Columns for Substitutable Columns and Object Tables" on page 8-2 for
more information about hidden columns for typeids and subtype attributes.

Restrictions on Modifying Substitutability
You can change the substitutability of only one column at a time with an ALTER
TABLE statement. To change substitutability for multiple columns, you must issue
multiple statements.

In an object table, you can only modify substitutability for a column if substitutability
was not explicitly set at the table level, when the table was created.

For example, the following attempt to modify substitutability for column address
succeeds because substitutability has not been explicitly turned on or off at the table
level in the CREATE TABLE statement:

DROP TABLE office_tab;
-- if previously created
CREATE TABLE office_tab OF office_typ;

ALTER TABLE office_tab
 MODIFY COLUMN occupant NOT SUBSTITUTABLE AT ALL LEVELS FORCE;

Inheritance in SQL Object Types

2-30 Oracle Database Object-Relational Developer's Guide

However, in the following example, substitutability is explicitly set at the table level,
so the attempt to modify the setting for column address fails:

DROP TABLE office_tab;
-- if previously created
CREATE TABLE office_tab OF office_typ
 NOT SUBSTITUTABLE AT ALL LEVELS;

/* Following SQL statement generates an error: */
ALTER TABLE office_tab
 MODIFY COLUMN occupant SUBSTITUTABLE AT ALL LEVELS FORCE -- incorrect ALTER;

A column whose substitutability is already constrained by an IS OF type operator
cannot have its substitutability modified with a [NOT] SUBSTITUTABLE AT ALL
LEVELS clause. See "Constraining Substitutability" on page 2-28 for information about
IS OF type.

Assignments Across Types
The assignment rules described in this section apply to INSERT/UPDATE statements,
the RETURNING clause, function parameters, and PL/SQL variables.

Typical Object to Object Assignment
Substitutability is the ability of a subtype to stand in for one of its supertypes.
Substitution in the other direction, to substitute a supertype for a subtype, raises an
error at compile time.

Assigning a source of type source_typ to a target of type target_typ must be of
one of the following two patterns:

■ Case 1: source_typ and target_typ are the same type

■ Case 2: source_typ is a subtype of target_typ (widening)

Case 2 illustrates widening. Widening is an assignment in which the declared type of
the source is more specific than the declared type of the target. For example, assigning
an employee instance to a variable of person type.

An employee is a more narrowly defined, specialized kind of person, so you can put
an employee in a slot meant for a person if you do not mind ignoring whatever extra
specialization makes that person an employee. All employees are persons, so a
widening assignment always works.

To illustrate widening, suppose that you have the following table:

TABLE T(pers_col person_typ, emp_col employee_typ,
stu_col student_typ)

The following assignments show widening. The assignments are valid unless
perscol has been defined to be not substitutable.

UPDATE T set pers_col = emp_col;

The following is a PL/SQL example, which first requires you to create a person_typ
and an employee_typ:

Example 2–31 PL/SQL Assignment

DROP TYPE person_typ FORCE;
-- if previously created

Inheritance in SQL Object Types

Basic Components of Oracle Objects 2-31

CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
 NOT FINAL;
/
DROP TYPE employee_typ FORCE; -- if previously created
CREATE TYPE employee_typ UNDER person_typ (
 emp_id NUMBER,
 mgr VARCHAR2(30));
/
-- PL/SQL assignment example
DECLARE
 var1 person_typ;
 var2 employee_typ;
BEGIN
 var2 := employee_typ(55, 'Jane Smith', '1-650-555-0144', 100, 'Jennifer
Nelson');
 var1 := var2;
END;
/

Narrowing Assignment
A narrowing assignment is the reverse of widening. It involves regarding a more
general, less specialized type of thing, such as a person, as a more narrowly defined
type of thing, such as an employee. Not all persons are employees, so a particular
assignment like this works only if the person in question actually happens to be an
employee. Thus, in the end, narrowing assignments only work in cases such as Case 1,
described in "Typical Object to Object Assignment" on page 2-30.

To do a narrowing assignment, you must use the TREAT function to test that the source
instance of the more general declared type is in fact an instance of the more specialized
target type and can therefore be operated on as such. The TREAT function does a
runtime check to confirm this and returns NULL if the source value, the person in
question, is not of the target type or one of its subtypes.

For example, the following UPDATE statement sets values of person_typ in column
perscol into column empcol of employee_typ. For each value in perscol, the
assignment succeeds if that person is also an employee. If the person is not an
employee, TREAT returns NULL, and the assignment returns NULL.

UPDATE T set emp_col = TREAT(pers_col AS employee_typ);

The following statement attempts to do a narrowing assignment without explicitly
changing the declared type of the source value. The statement will return an error:

UPDATE T set emp_col = pers_col;

See "Using TREAT for Narrowing Assignments" on page 2-36.

Collection Assignments
In assignments of expressions of a collection type, the source and target must be of the
same declared type. Neither widening nor narrowing is permitted. However, a
subtype value can be assigned to a supertype collection. For example, after creating a
new student_typ, suppose we have the following collection types:

Functions and Operators Useful with Objects

2-32 Oracle Database Object-Relational Developer's Guide

Example 2–32 Create Collection person_set

-- Requires 2-21
DROP student_typ;
-- if previously created
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30))
 NOT FINAL;
/
CREATE TYPE person_set AS TABLE OF person_typ;
/

CREATE TYPE student_set AS TABLE OF student_typ;
/

Expressions of these different collection types cannot be assigned to each other, but a
collection element of student_typ can be assigned to a collection of person_set
type:

DECLARE
 var1 person_set;
 var2 student_set;
 elem1 person_typ;
 elem2 student_typ;
BEGIN
-- var1 := var2; /* ILLEGAL - collections not of same type */
 var1 := person_set (elem1, elem2); /* LEGAL : Element is of subtype */
END;
/

Functions and Operators Useful with Objects
Several functions and operators are particularly useful for working with objects and
references to objects:

■ CAST

■ CURSOR

■ DEREF

■ IS OF type

■ REF

■ SYS_TYPEID

■ TABLE()

■ TREAT

■ VALUE

Examples are given throughout this book.

In PL/SQL the VALUE, REF and DEREF functions can appear only in a SQL statement.
For information about SQL functions, see Oracle Database SQL Language Reference.

CAST
CAST converts one built-in data type or collection-typed value into another built-in
data type or collection-typed value. For example:

Functions and Operators Useful with Objects

Basic Components of Oracle Objects 2-33

Example 2–33 Using the CAST Function

CREATE TYPE person_list_typ AS TABLE OF person_typ;
/

SELECT CAST(COLLECT(contact) AS person_list_typ)
 FROM contacts;

For more information about the SQL CAST function, Oracle Database SQL Language
Reference.

CURSOR
A CURSOR expression returns a nested cursor. This form of expression is equivalent to
the PL/SQL REF CURSOR and can be passed as a REF CURSOR argument to a function.

For more information about the SQL CURSOR expression, see Oracle Database SQL
Language Reference.

DEREF
The DEREF function in a SQL statement returns the object instance corresponding to a
REF. The object instance returned by DEREF may be of the declared type of the REF or
any of its subtypes.

For example, the following statement returns person_typ objects from the table
contact_ref.

Example 2–34 Using the DEREF Function

SELECT DEREF(c.contact_ref), c.contact_date
 FROM contacts_ref c;

See "Dereferencing REFs" on page 1-9. For more information about the SQL DEREF
function, see Oracle Database SQL Language Reference.

IS OF type
The IS OF type predicate tests object instances for the level of specialization of their
type.

For example, the following query retrieves all student instances (including any
subtypes of students) stored in the person_obj_table table.

Example 2–35 Using the IS OF type Operator to Query Value of a Subtype

SELECT VALUE(p)
 FROM person_obj_table p
WHERE VALUE(p) IS OF (student_typ);

For any object that is not of a specified subtype, or a subtype of a specified subtype, IS
OF returns FALSE. Subtypes of a specified subtype are just more specialized versions
of the specified subtype. If you want to exclude such subtypes, you can use the ONLY
keyword. This keyword causes IS OF to return FALSE for all types except the specified
types.

In the following example, the statement tests objects in object table person_obj_
table, which contains persons, employees, and students, and returns REFs just to
objects of the two specified person subtypes employee_typ, student_typ, and
their subtypes, if any:

Functions and Operators Useful with Objects

2-34 Oracle Database Object-Relational Developer's Guide

SELECT REF(p)
 FROM person_obj_table p
WHERE VALUE(p) IS OF (employee_typ, student_typ);

Here is a similar example in PL/SQL. The code does something if the person is an
employee or student:

DECLARE
 var person_typ;
BEGIN
 var := employee_typ(55, 'Jane Smith', '1-650-555-0144', 100, 'Jennifer Nelson');
 IF var IS OF (employee_typ, student_typ) THEN
 DBMS_OUTPUT.PUT_LINE('Var is an employee_typ or student_typ object.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Var is not an employee_typ or student_typ object.');
 END IF;
END;
/

The following statement returns only students whose most specific or specialized type
is student_typ. If the table or view contains any objects of a subtype of student_
typ, such as part_time_student_typ, these are excluded. The example uses the
TREAT function to convert objects that are students to student_typ from the
declared type of the view, person_typ:

SELECT TREAT(VALUE(p) AS student_typ)
 FROM person_obj_table p
WHERE VALUE(p) IS OF(ONLY student_typ);

To test the type of the object that a REF points to, you can use the DEREF function to
dereference the REF before testing with the IS OF type predicate.

For example, if contact_ref is declared to be REF person_typ, you can get just the
rows for students as follows:

SELECT *
 FROM contacts_ref
WHERE DEREF(contact_ref) IS OF (student_typ);

For more information about the SQL IS OF type condition, see Oracle Database SQL
Language Reference.

REF
The REF function in a SQL statement takes as an argument a correlation name (or table
alias) for an object table or view and returns a reference (a REF) to an object instance
from that table or view. The REF function may return references to objects of the
declared type of the table, view, or any of its subtypes. For example, the following
statement returns the references to all persons, including references to students and
employees, whose idno attribute is 12:

Example 2–36 Using the REF Function

SELECT REF(p)
 FROM person_obj_table p
 WHERE p.idno = 12;

For more information about the SQL REF function, see Oracle Database SQL Language
Reference.

Functions and Operators Useful with Objects

Basic Components of Oracle Objects 2-35

SYS_TYPEID
The SYS_TYPEID function can be used in a query to return the typeid (a hidden type)
of the most specific type of the object instance passed as an argument.

The most specific type of an object instance is the type that the instance belongs to, that
is, the farthest removed instance from the root type. For example, if Tim is a part-time
student, he is also a student and a person, but his most specific type is part-time
student.

The function returns the typeids from the hidden type-discriminant column that is
associated with every substitutable column. The function returns a null typeid for a
final, root type.

The syntax of the function is:

SYS_TYPEID(object_type_value)

Function SYS_TYPEID may be used only with arguments of an object type. Its
primary purpose is to make it possible to build an index on a hidden
type-discriminant column.

All types that belong to a type hierarchy are assigned a non-null typeid that is unique
within the type hierarchy. Types that do not belong to a type hierarchy have a null
typeid.

Every type except a final root type belongs to a type hierarchy. A final root type has no
types related to it by inheritance:

■ It cannot have subtypes derived from it because it is final.

■ It is not itself derived from some other type because it is a root type, so it does not
have any supertypes.

For an example of SYS_TYPEID, consider the substitutable object table person_obj_
table, of person_typ. person_typ is the root type of a hierarchy that has
student_typ as a subtype and part_time_student_typ as a subtype of
student_typ. See Example 2–20 on page 2-19.

The following query uses SYS_TYPEID. It gets the name attribute and typeid of the
object instances in the person_obj_table table. Each of the instances is of a
different type:

Example 2–37 Using the SYS_TYPEID Function

SELECT name, SYS_TYPEID(VALUE(p)) typeid FROM person_obj_table p;

See "Hidden Columns for Substitutable Columns and Object Tables" on page 8-2 for
information about the type-discriminant and other hidden columns. For more
information about the SQL SYS TYPEID function, see Oracle Database SQL Language
Reference.

TABLE()
Table functions are functions that produce a collection of rows, a nested table or a
varray, that can be queried like a physical database table or assigned to a PL/SQL
collection variable. You can use a table function like the name of a database table, in
the FROM clause of a query, or like a column name in the SELECT list of a query.

A table function can take a collection of rows as input. An input collection parameter
can be either a collection type, such as a VARRAY or a PL/SQL table, or a REF CURSOR.

Functions and Operators Useful with Objects

2-36 Oracle Database Object-Relational Developer's Guide

Use PIPELINED to instruct Oracle Database to return the results of a table function
iteratively. A table function returns a nested table or varray type. You query table
functions by using the TABLE keyword before the function name in the FROM clause of
the query.

For information on TABLE() functions, see Oracle Database Data Cartridge Developer's
Guide and Oracle Database PL/SQL Language Reference.

TREAT
The TREAT function does a runtime check to confirm that an expression can be
operated on as if it were of a different specified type in the hierarchy, normally a
subtype of the declared type of the expression. In other words, the function attempts to
treat a supertype instance as a subtype instance, for example, to treat a person as a
student. If the person is a student, then the person is returned as a student, with the
additional attributes and methods that a student may have. If the person is not a
student, TREAT returns NULL in SQL.

The two main uses of TREAT are:

■ In narrowing assignments, to modify the type of an expression so that the
expression can be assigned to a variable of a more specialized type in the
hierarchy: that is, to set a supertype value into a subtype.

■ To access attributes or methods of a subtype of the declared type of a row or
column.

A substitutable object table or column of type T has a hidden column for every
attribute of every subtype of T. These hidden columns contain subtype attribute
data, but you cannot list them with a DESCRIBE statement. TREAT enables you to
access these columns.

Using TREAT for Narrowing Assignments
The TREAT function is used for narrowing assignments, that is, assignments that set a
supertype value into a subtype. For a comparison to widening assignments, see
"Assignments Across Types" on page 2-30.

In Example 2–38, TREAT returns all (and only) student_typ instances from person_
obj_table of type person_typ, a supertype of student_typ. The statement uses
TREAT to modify the type of p from person_typ to student_typ.

Example 2–38 Using the TREAT Function to Return a Specific Subtype in a Query

SELECT TREAT(VALUE(p) AS student_typ)
 FROM person_obj_table p;

For each p, the TREAT modification succeeds only if the most specific or specialized
type of the value of p is student_typ or one of its subtypes. If p is a person who is
not a student, or if p is NULL, TREAT returns NULL in SQL or, in PL/SQL, raises an
exception.

You can also use TREAT to modify the declared type of a REF expression. For example:

SELECT TREAT(REF(p) AS REF student_typ)
 FROM person_obj_table p;

The previous example returns REFs to all student_typ instances. In SQL it returns
NULL REFs for all person instances that are not students, and in PL/SQL it raises an
exception.

Functions and Operators Useful with Objects

Basic Components of Oracle Objects 2-37

Using the TREAT Function to Access Subtype Attributes or Methods
Perhaps the most important use of TREAT is to access attributes or methods of a
subtype of a row or column's declared type. The following query retrieves the major
attribute of all persons, students and part-time students, who have this attribute. NULL
is returned for persons who are not students:

Example 2–39 Using the TREAT Function to Access Attributes of a Specific Subtype

SELECT name, TREAT(VALUE(p) AS student_typ).major major
 FROM person_obj_table p;

The following query will not work because major is an attribute of student_typ but
not of person_typ, the declared type of table persons:

SELECT name, VALUE(p).major major FROM person_obj_table p -- incorrect;

The following is a PL/SQL example:

DECLARE
 var person_typ;
BEGIN
 var := employee_typ(55, 'Jane Smith', '1-650-555-0144', 100, 'Jennifer Nelson');
 DBMS_OUTPUT.PUT_LINE(TREAT(var AS employee_typ).mgr);
END;
/

For more information about the SQL TREAT function, see Oracle Database SQL
Language Reference.

VALUE
In a SQL statement, the VALUE function takes as its argument a correlation variable
(table alias) for an object table or object view and returns object instances
corresponding to rows of the table or view. The VALUE function may return instances
of the declared type of the row or any of its subtypes.

Example 2–40 first create a part_time_student_typ, and then shows a SELECT
query returning all persons, including students and employees, from table person_
obj_table of person_typ.

Example 2–40 Using the VALUE Function

-- Requires Ex. 2-31 and 2-32
CREATE TYPE part_time_student_typ UNDER student_typ (
 number_hours NUMBER);
/
SELECT VALUE(p) FROM person_obj_table p;

To retrieve only part time students, that is, instances whose most specific type is
part_time_student_typ, use the ONLY keyword to confine the selection:

SELECT VALUE(p) FROM person_obj_table p
 WHERE VALUE(p) IS OF (ONLY part_time_student_typ);

In the following example, VALUE is used to update a object instance in an object table:

UPDATE person_obj_table p
 SET VALUE(p) = person_typ(12, 'Bob Jones', '1-650-555-0130')
 WHERE p.idno = 12;

Functions and Operators Useful with Objects

2-38 Oracle Database Object-Relational Developer's Guide

See also Example 5–22, "Using VALUE to Update a Nested Table" on page 5-16. For
more information about the SQL VALUE function, see Oracle Database SQL Language
Reference.

3

Using PL/SQL With Object Types 3-1

3 Using PL/SQL With Object Types

This chapter describes how to use object types with PL/SQL

This chapter contains these topics:

■ Declaring and Initializing Objects in PL/SQL

■ Manipulating Objects in PL/SQL

■ Using Overloading in PL/SQL with Inheritance

■ Using Dynamic SQL With Objects

Declaring and Initializing Objects in PL/SQL
Using object types in a PL/SQL block, subprogram, or package is a two-step process.

1. You must define object types using the SQL statement CREATE TYPE, in SQL*Plus
or other similar programs.

After an object type is defined and installed in the schema, you can use it in any
PL/SQL block, subprogram, or package.

2. In PL/SQL, you then declare a variable whose data type is the user-defined type
or ADT that you just defined.

Objects or ADTs follow the usual scope and instantiation rules.

Defining Object Types
Example 3–1 provides two object types, and a table of object types. Subsequent
examples show how to declare variables of those object types in PL/SQL and perform
other operations with these objects.

Example 3–1 Working With Object Types

CREATE TYPE address_typ AS OBJECT (
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 postal_code VARCHAR2(6));
/
CREATE TYPE employee_typ AS OBJECT (
 employee_id NUMBER(6),
 first_name VARCHAR2(20),
 last_name VARCHAR2(25),

See Also: "About Object Types" on page 1-3

Declaring and Initializing Objects in PL/SQL

3-2 Oracle Database Object-Relational Developer's Guide

 email VARCHAR2(25),
 phone_number VARCHAR2(20),
 hire_date DATE,
 job_id VARCHAR2(10),
 salary NUMBER(8,2),
 commission_pct NUMBER(2,2),
 manager_id NUMBER(6),
 department_id NUMBER(4),
 address address_typ,
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER PROCEDURE display_address (SELF IN OUT NOCOPY employee_typ));
/
CREATE TYPE BODY employee_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN employee_id;
 END;
 MEMBER PROCEDURE display_address (SELF IN OUT NOCOPY employee_typ) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(first_name || ' ' || last_name);
 DBMS_OUTPUT.PUT_LINE(address.street);
 DBMS_OUTPUT.PUT_LINE(address.city || ', ' || address.state || ' ' ||
 address.postal_code);
 END;
END;
/
CREATE TABLE employee_tab OF employee_typ;

Declaring Objects in a PL/SQL Block
You can use objects or ADTs wherever built-in types such as CHAR or NUMBER can be
used.

Example 3–2 declares object emp of type employee_typ. Then, the constructor for
object type employee_typ initializes the object.

Example 3–2 Declaring Objects in a PL/SQL Block

-- Requires Ex. 3-1
DECLARE
 emp employee_typ; -- emp is atomically null
BEGIN
-- call the constructor for employee_typ
 emp := employee_typ(315, 'Francis', 'Logan', 'FLOGAN',
 '415.555.0100', '01-MAY-04', 'SA_MAN', 11000, .15, 101, 110,
 address_typ('376 Mission', 'San Francisco', 'CA', '94222'));
 DBMS_OUTPUT.PUT_LINE(emp.first_name || ' ' || emp.last_name); -- display details
 emp.display_address(); -- call object method to display details
END;
/

The formal parameter of a PL/SQL subprogram can have data types of user-defined
types. Therefore, you can pass objects to stored subprograms and from one
subprogram to another. In the next example, the object type employee_typ specifies
the data type of a formal parameter:

PROCEDURE open_acct (new_acct IN OUT employee_typ) IS ...

In the following example, object type employee_typ specifies the return type of a
function:

Manipulating Objects in PL/SQL

Using PL/SQL With Object Types 3-3

FUNCTION get_acct (acct_id IN NUMBER) RETURN employee_typ IS ...

How PL/SQL Treats Uninitialized Objects
User-defined types, just like collections, are atomically null, until you initialize the
object by calling the constructor for its object type. That is, the object itself is null, not
just its attributes.

Comparing a null object with any other object always yields NULL. Also, if you assign
an atomically null object to another object, the other object becomes atomically null
(and must be reinitialized). Likewise, if you assign the non-value NULL to an object,
the object becomes atomically null.

In an expression, attributes of an uninitialized object evaluate to NULL. When applied
to an uninitialized object or its attributes, the IS NULL comparison operator yields
TRUE.

See Example 2–1 on page 2-2 for an illustration of null objects and objects with null
attributes.

Manipulating Objects in PL/SQL
This section describes how to manipulate object attributes and methods in PL/SQL.

This section includes the following topics:

■ Accessing Object Attributes With Dot Notation

■ Calling Object Constructors and Methods

■ Updating and Deleting Objects

■ Manipulating Objects Through Ref Modifiers

Accessing Object Attributes With Dot Notation
You refer to an attribute by name. To access or change the value of an attribute, you
use dot notation. Attribute names can be chained, which lets you access the attributes
of a nested object type.

Example 3–3 uses dot notation and generates the same output as Example 3–2.

Example 3–3 Accessing Object Attributes

-- Requires Ex. 3-1
DECLARE
 emp employee_typ;
BEGIN
 emp := employee_typ(315, 'Francis', 'Logan', 'FLOGAN',
 '415.555.0100', '01-MAY-04', 'SA_MAN', 11000, .15, 101, 110,
 address_typ('376 Mission', 'San Francisco', 'CA', '94222'));
 DBMS_OUTPUT.PUT_LINE(emp.first_name || ' ' || emp.last_name);
 DBMS_OUTPUT.PUT_LINE(emp.address.street);
 DBMS_OUTPUT.PUT_LINE(emp.address.city || ', ' ||emp. address.state || ' ' ||
 emp.address.postal_code);
END;
/

Manipulating Objects in PL/SQL

3-4 Oracle Database Object-Relational Developer's Guide

Calling Object Constructors and Methods
Calls to a constructor are allowed wherever function calls are allowed. Like all
functions, a constructor is called as part of an expression, as shown in Example 3–3 on
page 3-3 and Example 3–4.

Example 3–4 Inserting Rows in an Object Table

-- Requires Ex. 3-1
DECLARE
 emp employee_typ;
BEGIN
 INSERT INTO employee_tab VALUES (employee_typ(310, 'Evers', 'Boston', 'EBOSTON',
 '617.555.0100', '01-AUG-04', 'SA_REP', 9000, .15, 101, 110,
 address_typ('123 Main', 'San Francisco', 'CA', '94111')));
 INSERT INTO employee_tab VALUES (employee_typ(320, 'Martha', 'Dunn', 'MDUNN',
 '650.555.0150', '30-SEP-04', 'AC_MGR', 12500, 0, 101, 110,
 address_typ('123 Broadway', 'Redwood City', 'CA', '94065')));
END;
/
SELECT VALUE(e) from employee_tab e;

When you pass parameters to a constructor, the call assigns initial values to the
attributes of the object being instantiated. When you call the default constructor to fill
in all attribute values, you must supply a parameter for every attribute; unlike
constants and variables, attributes cannot have default values. You can call a
constructor using named notation instead of positional notation.

Like packaged subprograms, methods are called using dot notation. In Example 3–5,
the display_address method is called to display attributes of an object. Note the
use of the VALUE function which returns the value of an object. VALUE takes as its
argument a correlation variable. In this context, a correlation variable is a row variable
or table alias associated with a row in an object table.

Example 3–5 Accessing Object Methods

-- Requires Ex. 3-1 and Ex. 3-4
DECLARE
 emp employee_typ;
BEGIN
 SELECT VALUE(e) INTO emp FROM employee_tab e WHERE e.employee_id = 310;
 emp.display_address();
END;
/

In SQL statements, calls to a parameterless method require an empty parameter list. In
procedural statements, an empty parameter list is optional unless you chain calls, in
which case it is required for all but the last call. Also, if you chain two function calls,
the first function must return an object that can be passed to the second function.

If a PL/SQL function is used in place of an ADT constructor during a DML operation,
the function may execute multiple times as part of the DML execution. For the
function to execute only once per occurrence, it must be a deterministic function.

For static methods, calls use the notation type_name.method_name rather than
specifying an instance of the type.

When you call a method using an instance of a subtype, the actual method that is
executed depends on declarations in the type hierarchy. If the subtype overrides the
method that it inherits from its supertype, the call uses the subtype implementation.

Manipulating Objects in PL/SQL

Using PL/SQL With Object Types 3-5

Otherwise, the call uses the supertype implementation. This capability is known as
dynamic method dispatch.

Updating and Deleting Objects
From inside a PL/SQL block you can modify and delete rows in an object table.

Example 3–6 Updating and Deleting Rows in an Object Table

-- Requires Ex. 3-1 and 3-4
DECLARE
 emp employee_typ;
BEGIN
 INSERT INTO employee_tab VALUES (employee_typ(370, 'Robert', 'Myers', 'RMYERS',
 '415.555.0150', '07-NOV-04', 'SA_REP', 8800, .12, 101, 110,
 address_typ('540 Fillmore', 'San Francisco', 'CA', '94011')));
 UPDATE employee_tab e SET e.address.street = '1040 California'
 WHERE e.employee_id = 370;
 DELETE FROM employee_tab e WHERE e.employee_id = 310;
END;
/
SELECT VALUE(e) from employee_tab e;

Manipulating Objects Through Ref Modifiers
You can retrieve REFs using the function REF, which takes as its argument a
correlation variable or alias.

Example 3–7 Updating Rows in an Object Table With a REF Modifier

-- Requires Ex. 3-1, 3-4, and 3-6
DECLARE
 emp employee_typ;
 emp_ref REF employee_typ;
BEGIN
 SELECT REF(e) INTO emp_ref FROM employee_tab e WHERE e.employee_id = 370;
 UPDATE employee_tab e
 SET e.address = address_typ('8701 College', 'Oakland', 'CA', '94321')
 WHERE REF(e) = emp_ref;
END;
/

You can declare REFs as variables, parameters, fields, or attributes. You can use REFs
as input or output variables in SQL data manipulation statements.

You cannot navigate through REFs in PL/SQL. For example, the assignment in
Example 3–8 using a REF is not allowed. Instead, use the function DEREF or make calls
to the package UTL_REF to access the object. For information on the REF function, see
Oracle Database SQL Language Reference.

Example 3–8 Trying to Use DEREF in a SELECT INTO Statement, Incorrect

-- Requires Ex. 3-1, 3-4, and 3-6
DECLARE
 emp employee_typ;
 emp_ref REF employee_typ;
 emp_name VARCHAR2(50);
BEGIN

See Also: "Dynamic Method Dispatch" on page 2-23

Using Overloading in PL/SQL with Inheritance

3-6 Oracle Database Object-Relational Developer's Guide

 SELECT REF(e) INTO emp_ref FROM employee_tab e WHERE e.employee_id = 370;
 -- the following assignment raises an error, not allowed in PL/SQL
 emp := DEREF(emp_ref); -- cannot use DEREF in procedural statements
 emp_name := emp.first_name || ' ' || emp.last_name;
 DBMS_OUTPUT.PUT_LINE(emp_name);
END;
/

This assignment raises an error as described below:

not allowed in PL/SQL
-- emp_name := emp_ref.first_name || ' ' || emp_ref.last_name;
-- emp := DEREF(emp_ref); not allowed, cannot use DEREF in procedural statements

For detailed information on the DEREF function, see Oracle Database SQL Language
Reference.

Using Overloading in PL/SQL with Inheritance
Overloading allows you to substitute a subtype value for a formal parameter that is a
supertype. This capability is known as substitutability. This section is about this aspect
of overloading.

Rules of Substitution
If more than one instance of an overloaded procedure matches the procedure call, the
following substitution rules determine which procedure, if any, is called:

■ If the signatures of the overloaded procedures only differ in that some parameters
are object types from the same supertype-subtype hierarchy, the closest match is
used. The closest match is one where all the parameters are at least as close as any
other overloaded instance, as determined by the depth of inheritance between the
subtype and supertype, and at least one parameter is closer.

■ If instances of two overloaded methods match, and some argument types are
closer in one overloaded procedure while others are closer in the second
procedure, a semantic error occurs.

■ If some parameters differ in their position within the object type hierarchy, and
other parameters are of different data types so that an implicit conversion would
be necessary, then a semantic error occurs.

Example 3–9 creates a type hierarchy that has three levels starting with super_t.
There is a package with two overloaded instances of a function that are the same
except for the position of the argument type in the type hierarchy. The invocation
declares a variable of type final_t, and then calls the overloaded function.

The instance of the function that executes is the one that accepts a sub_t parameter,
because sub_t is closer to final_t than super_t in the hierarchy. This follows the
rules of substitution.

Note that because determining which instance to call happens at compile time, the fact
that the argument passed in was also a final_t is ignored. If the declaration was v
super_t := final_t(1,2,3), the overloaded function with the argument super_t
would be called.

Example 3–9 Resolving PL/SQL Functions With Inheritance

CREATE OR REPLACE TYPE super_t AS OBJECT
 (n NUMBER) NOT final;
/

Using Overloading in PL/SQL with Inheritance

Using PL/SQL With Object Types 3-7

CREATE OR REPLACE TYPE sub_t UNDER super_t
 (n2 NUMBER) NOT final;
/
CREATE OR REPLACE TYPE final_t UNDER sub_t
 (n3 NUMBER);
/
CREATE OR REPLACE PACKAGE p IS
 FUNCTION func (arg super_t) RETURN NUMBER;
 FUNCTION func (arg sub_t) RETURN NUMBER;
END;
/
CREATE OR REPLACE PACKAGE BODY p IS
 FUNCTION func (arg super_t) RETURN NUMBER IS BEGIN RETURN 1; END;
 FUNCTION func (arg sub_t) RETURN NUMBER IS BEGIN RETURN 2; END;
END;
/

DECLARE
 v final_t := final_t(1,2,3);
BEGIN
 DBMS_OUTPUT.PUT_LINE(p.func(v)); -- prints 2
END;
/

In Example 3–10, determining which instance to call happens at run time because the
functions are overriding member functions of the type hierarchy. This is dynamic
method dispatch, described in "Dynamic Method Dispatch" on page 2-23.

Though v is an instance of super_t, because the value of final_t is assigned to v,
the sub_t instance of the function is called, following the rules of substitution.

Example 3–10 Resolving PL/SQL Functions With Inheritance Dynamically

-- Perform the following drop commands if you created these objects in Ex. 3-9
-- DROP PACKAGE p;
-- DROP TYPE final_t;
-- DROP TYPE _sub_t;
-- DROP TYPE super_t FORCE;
CREATE OR REPLACE TYPE super_t AS OBJECT
 (n NUMBER, MEMBER FUNCTION func RETURN NUMBER) NOT final;
/
CREATE OR REPLACE TYPE BODY super_t AS
 MEMBER FUNCTION func RETURN NUMBER IS BEGIN RETURN 1; END; END;
/
CREATE TYPE sub_t UNDER super_t
 (n2 NUMBER,
 OVERRIDING MEMBER FUNCTION func RETURN NUMBER) NOT final;
/
CREATE OR REPLACE TYPE BODY sub_t AS
 OVERRIDING MEMBER FUNCTION func RETURN NUMBER IS BEGIN RETURN 2; END; END;
/
CREATE OR REPLACE TYPE final_t UNDER sub_t
 (n3 NUMBER);
/

DECLARE
 v super_t := final_t(1,2,3);
BEGIN
 DBMS_OUTPUT.PUT_LINE('answer:'|| v.func); -- prints 2
END;

Using Dynamic SQL With Objects

3-8 Oracle Database Object-Relational Developer's Guide

/

Using Dynamic SQL With Objects
Dynamic SQL is a feature of PL/SQL that enables you to enter SQL information at run
time, such as: a table name, the full text of a SQL statement, or variable information.

Example 3–11 illustrates the use of objects and collections with dynamic SQL. First, the
example defines the object type person_typ and the VARRAY type hobbies_var,
then it defines the package, teams, that uses these types. You need AUTHID
CURRENT_USER to execute dynamic package methods; otherwise, these methods raise
an insufficient privileges error when you run Example 3–12.

Example 3–11 A Package that Uses Dynamic SQL for Object Types and Collections

CREATE OR REPLACE TYPE person_typ AS OBJECT (name VARCHAR2(25), age NUMBER);
/
CREATE TYPE hobbies_var AS VARRAY(10) OF VARCHAR2(25);
/
CREATE OR REPLACE PACKAGE teams

 AUTHID CURRENT_USER AS
 PROCEDURE create_table (tab_name VARCHAR2);
 PROCEDURE insert_row (tab_name VARCHAR2, p person_typ, h hobbies_var);
 PROCEDURE print_table (tab_name VARCHAR2);
END;
/
CREATE OR REPLACE PACKAGE BODY teams AS
 PROCEDURE create_table (tab_name VARCHAR2) IS
 BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE ' || tab_name ||
 ' (pers person_typ, hobbs hobbies_var)';
 END;
 PROCEDURE insert_row (
 tab_name VARCHAR2,
 p person_typ,
 h hobbies_var) IS
 BEGIN
 EXECUTE IMMEDIATE 'INSERT INTO ' || tab_name ||
 ' VALUES (:1, :2)' USING p, h;
 END;
 PROCEDURE print_table (tab_name VARCHAR2) IS
 TYPE refcurtyp IS REF CURSOR;
 v_cur refcurtyp;
 p person_typ;
 h hobbies_var;
 BEGIN
 OPEN v_cur FOR 'SELECT pers, hobbs FROM ' || tab_name;
 LOOP
 FETCH v_cur INTO p, h;
 EXIT WHEN v_cur%NOTFOUND;
 -- print attributes of 'p' and elements of 'h'
 DBMS_OUTPUT.PUT_LINE('Name: ' || p.name || ' - Age: ' || p.age);
 FOR i IN h.FIRST..h.LAST
 LOOP
 DBMS_OUTPUT.PUT_LINE('Hobby(' || i || '): ' || h(i));
 END LOOP;

See Also: Oracle Database PL/SQL Language Reference

Using Dynamic SQL With Objects

Using PL/SQL With Object Types 3-9

 END LOOP;
 CLOSE v_cur;
 END;
END;
/

From an anonymous block, you might call the procedures in package TEAMS:

Example 3–12 Calling Procedures from the TEAMS Package

DECLARE
 team_name VARCHAR2(15);
BEGIN
 team_name := 'Notables';
 TEAMS.create_table(team_name);
 TEAMS.insert_row(team_name, person_typ('John', 31),
 hobbies_var('skiing', 'coin collecting', 'tennis'));
 TEAMS.insert_row(team_name, person_typ('Mary', 28),
 hobbies_var('golf', 'quilting', 'rock climbing', 'fencing'));
 TEAMS.print_table(team_name);
END;
/

Using Dynamic SQL With Objects

3-10 Oracle Database Object-Relational Developer's Guide

4

Object Support in Oracle Programming Environments 4-1

4 Object Support in Oracle Programming
Environments

In an Oracle database, you can create object types with SQL data definition language
(DDL) commands, and you can manipulate objects with SQL data manipulation
language (DML) commands. From there, you can use many Oracle application
programming environments and tools that have built-in support for Oracle Objects.

This chapter discusses the following topics:

■ SQL and Object Types

■ SQL Developer

■ PL/SQL

■ Oracle Call Interface (OCI)

■ Pro*C/C++

■ Oracle C++ Call Interface (OCCI)

■ Oracle Objects For OLE (OO4O)

■ Java Tools for Accessing Oracle Objects

■ XML

■ Utilities Providing Support for Objects

SQL and Object Types
Oracle SQL data definition language (DDL) provides the following support for object
types:

■ Defining object types, nested tables, and arrays

■ Specifying privileges

■ Specifying table columns of object types

■ Creating object tables

Oracle SQL DML provides the following support for object types:

■ Querying and updating objects and collections

■ Manipulating REFs

See Also: For a complete description of Oracle SQL syntax, see
Oracle Database SQL Language Reference

SQL Developer

4-2 Oracle Database Object-Relational Developer's Guide

SQL Developer
SQL Developer provides a visual development environment for database developers
and DBAs to create and manipulate database schema objects including Oracle Objects,
and to run reports, monitor performance and perform many other database-related
tasks using a rich graphical user interface.

PL/SQL
Object types and subtypes can be used in PL/SQL procedures and functions in most
places where built-in types can appear.

The parameters and variables of PL/SQL functions and procedures can be of object
types.

You can implement the methods associated with object types in PL/SQL. These
methods (functions and procedures) reside on the server as part of a user's schema.

Oracle Call Interface (OCI)
OCI is a set of C library functions that applications can use to manipulate data and
schemas in an Oracle database. OCI supports both traditional 3GL and object-oriented
techniques for database access, as explained in the following sections.

An important component of OCI is a set of calls to manage a workspace called the
object cache. The object cache is a memory block on the client side that allows
programs to store entire objects and to navigate among them without additional round
trips to the server.

The object cache is completely under the control and management of the application
programs using it. The Oracle server has no access to it. The application programs
using it must maintain data coherency with the server and protect the workspace
against simultaneous conflicting access.

OCI provides functions to

■ Access objects on the server using SQL.

■ Access, manipulate and manage objects in the object cache by traversing pointers
or REFs.

■ Convert Oracle dates, strings and numbers to C data types.

■ Manage the size of the object cache's memory.

OCI improves concurrency by allowing individual objects to be locked. It improves
performance by supporting complex object retrieval.

OCI developers can use the object type translator to generate the C data types
corresponding to a Oracle object types.

See Also: Oracle Database Oracle SQL Developer User's Guide

See Also: For a complete description of PL/SQL, see the Oracle
Database PL/SQL Language Reference

See Also: Oracle Call Interface Programmer's Guide for more
information about using objects with OCI

Oracle Call Interface (OCI)

Object Support in Oracle Programming Environments 4-3

Associative Access in OCI Programs
Traditionally, 3GL programs manipulate data stored in a relational database by
executing SQL statements and PL/SQL procedures. Data is usually manipulated on
the server without incurring the cost of transporting the data to the client(s). OCI
supports this associative access to objects by providing an API for executing SQL
statements that manipulate object data. Specifically, OCI enables you to:

■ Execute SQL statements that manipulate object data and object type schema
information

■ Pass object instances, object references (REFs), and collections as input variables in
SQL statements

■ Return object instances, REFs, and collections as output of SQL statement fetches

■ Describe the properties of SQL statements that return object instances, REFs, and
collections

■ Describe and execute PL/SQL procedures or functions with object parameters or
results

■ Synchronize object and relational functionality through enhanced commit and
rollback functions

See "Associative Access in Pro*C/C++" on page 4-5.

Navigational Access in OCI Programs
In the object-oriented programming paradigm, applications model their real-world
entities as a set of inter-related objects that form graphs of objects. The relationships
between objects are implemented as references. An application processes objects by
starting at some initial set of objects, using the references in these initial objects to
traverse the remaining objects, and performing computations on each object. OCI
provides an API for this style of access to objects, known as navigational access.
Specifically, OCI enables you to:

■ Cache objects in memory on the client machine

■ Dereference an object reference and pin the corresponding object in the object
cache. The pinned object is transparently mapped in the host language
representation.

■ Notify the cache when the pinned object is no longer needed

■ Fetch a graph of related objects from the database into the client cache in one call

■ Lock objects

■ Create, update, and delete objects in the cache

■ Flush changes made to objects in the client cache to the database

See "Navigational Access in Pro*C/C++" on page 4-6.

Object Cache
To support high-performance navigational access of objects, OCI runtime provides an
object cache for caching objects in memory. The object cache supports references
(REFs) to database objects in the object cache, the database objects can be identified
(that is, pinned) through their references. Applications do not need to allocate or free
memory when database objects are loaded into the cache, because the object cache
provides transparent and efficient memory management for database objects.

Oracle Call Interface (OCI)

4-4 Oracle Database Object-Relational Developer's Guide

Also, when database objects are loaded into the cache, they are transparently mapped
into the host language representation. For example, in the C programming language,
the database object is mapped to its corresponding C structure. The object cache
maintains the association between the object copy in the cache and the corresponding
database object. Upon transaction commit, changes made to the object copy in the
cache are propagated automatically to the database.

The object cache maintains a fast look-up table for mapping REFs to objects. When an
application dereferences a REF and the corresponding object is not yet cached in the
object cache, the object cache automatically sends a request to the server to fetch the
object from the database and load it into the object cache. Subsequent dereferences of
the same REF are faster because they become local cache access and do not incur
network round-trips. To notify the object cache that an application is accessing an
object in the cache, the application pins the object; when it is finished with the object, it
unpins it. The object cache maintains a pin count for each object in the cache. The
count is incremented upon a pin call and decremented upon an unpin call. When the
pin count goes to zero, it means the object is no longer needed by the application. The
object cache uses a least-recently used (LRU) algorithm to manage the size of the
cache. When the cache reaches the maximum size, the LRU algorithm frees candidate
objects with a pin count of zero.

Building an OCI Program That Manipulates Objects
When you build an OCI program that manipulates objects, you must complete the
following general steps:

1. Define the object types that correspond to the application objects.

2. Execute the SQL DDL statements to populate the database with the necessary
object types.

3. Represent the object types in the host language format.

For example, to manipulate instances of the object types in a C program, you must
represent these types in the C host language format. You can do this by
representing the object types as C structs. You can use a tool provided by Oracle
called the Object Type Translator (OTT) to generate the C mapping of the object
types. The OTT puts the equivalent C structs in header (*.h) files. You include
these *.h files in the *.c files containing the C functions that implement the
application.

4. Construct the application executable by compiling and linking the application's *.c
files with the OCI library.

Defining User-Defined Constructors in C
When defining a user-defined constructor in C, you must specify SELF (and you may
optionally specify SELF TDO) in the PARAMETERS clause. On entering the C function,
the attributes of the C structure that the object maps to are all initialized to NULL. The
value returned by the function is mapped to an instance of the user-defined type.
Example 4–1 shows how to define a user-defined constructor in C.

Example 4–1 Defining a User-Defined Constructor in C

CREATE LIBRARY person_lib TRUSTED AS STATIC
/

See Also: Oracle Call Interface Programmer's Guide for tips and
techniques for using OCI program effectively with objects

Pro*C/C++

Object Support in Oracle Programming Environments 4-5

CREATE TYPE person AS OBJECT
 (name VARCHAR2(30),
 CONSTRUCTOR FUNCTION person(SELF IN OUT NOCOPY person, name VARCHAR2)
 RETURN SELF AS RESULT);
/

CREATE TYPE BODY person IS
 CONSTRUCTOR FUNCTION person(SELF IN OUT NOCOPY person, name VARCHAR2)
 RETURN SELF AS RESULT
 IS EXTERNAL NAME "cons_person_typ" LIBRARY person_lib WITH CONTEXT
 PARAMETERS(context, SELF, name OCIString, name INDICATOR sb4);
END;
/

The SELF parameter is mapped like an IN parameter, so in the case of a NOT FINAL
type, it is mapped to (dvoid *), not (dvoid **).

The return value's TDO must match the TDO of SELF and is therefore implicit. The
return value can never be null, so the return indicator is implicit as well.

Pro*C/C++
The Oracle Pro*C/C++ precompiler allows programmers to use user-defined data
types in C and C++ programs.

Pro*C developers can use the Object Type Translator to map Oracle object types and
collections into C data types to be used in the Pro*C application.

Pro*C provides compile time type checking of object types and collections and
automatic type conversion from database types to C data types.

Pro*C includes an EXEC SQL syntax to create and destroy objects and offers two ways
to access objects in the server:

■ SQL statements and PL/SQL functions or procedures embedded in Pro*C
programs.

■ An interface to the object cache (described under "Oracle Call Interface (OCI)" on
page 4-2), where objects can be accessed by traversing pointers, then modified and
updated on the server.

Associative Access in Pro*C/C++
For background information on associative access, see "Associative Access in OCI
Programs" on page 4-3.

Pro*C/C++ offers the following capabilities for associative access to objects:

■ Support for transient copies of objects allocated in the object cache

■ Support for transient copies of objects referenced as input host variables in
embedded SQL INSERT, UPDATE, and DELETE statements, or in the WHERE clause
of a SELECT statement

■ Support for transient copies of objects referenced as output host variables in
embedded SQL SELECT and FETCH statements

See Also: For a complete description of the Pro*C precompiler,
see Pro*C/C++ Programmer's Guide.

Pro*C/C++

4-6 Oracle Database Object-Relational Developer's Guide

■ Support for ANSI dynamic SQL statements that reference object types through the
DESCRIBE statement, to get the object's type and schema information

Navigational Access in Pro*C/C++
For background information on navigational access, see "Navigational Access in OCI
Programs" on page 4-3.

Pro*C/C++ offers the following capabilities to support a more object-oriented interface
to objects:

■ Support for dereferencing, pinning, and optionally locking an object in the object
cache using an embedded SQL OBJECT DEREF statement

■ Allowing a Pro*C/C++ user to inform the object cache when an object has been
updated or deleted, or when it is no longer needed, using embedded SQL OBJECT
UPDATE, OBJECT DELETE, and OBJECT RELEASE statements

■ Support for creating new referenceable objects in the object cache using an
embedded SQL OBJECT CREATE statement

■ Support for flushing changes made in the object cache to the server with an
embedded SQL OBJECT FLUSH statement

Converting Between Oracle Types and C Types
The C representation for objects that is generated by the Oracle Type Translator (OTT)
uses OCI types whose internal details are hidden, such as OCIString and
OCINumber for scalar attributes. Collection types and object references are similarly
represented using OCITable, OCIArray, and OCIRef types. While using these
opaque types insulates you from changes to their internal formats, using such types in
a C or C++ application is cumbersome. Pro*C/C++ provides the following ease-of-use
enhancements to simplify use of OCI types in C and C++ applications:

■ Object attributes can be retrieved and implicitly converted to C types with the
embedded SQL OBJECT GET statement.

■ Object attributes can be set and converted from C types with the embedded SQL
OBJECT SET statement.

■ Collections can be mapped to a host array with the embedded SQL COLLECTION
GET statement. Furthermore, if the collection is comprised of scalar types, then the
OCI types can be implicitly converted to a compatible C type.

■ Host arrays can be used to update the elements of a collection with the embedded
SQL COLLECTION SET statement. As with the COLLECTION GET statement, if the
collection is comprised of scalar types, C types are implicitly converted to OCI
types.

Oracle Type Translator (OTT)
The Oracle Type Translator (OTT) is a program that automatically generates C
language structure declarations corresponding to object types. OTT makes it easier to
use the Pro*C precompiler and the OCI server access package.

See Also: For complete information about OTT, see Oracle Call
Interface Programmer's Guide and Pro*C/C++ Programmer's Guide.

Oracle C++ Call Interface (OCCI)

Object Support in Oracle Programming Environments 4-7

Oracle C++ Call Interface (OCCI)
The Oracle C++ Call Interface (OCCI) is a C++ API that enables you to use the
object-oriented features, native classes, and methods of the C++ programing language
to access the Oracle database.

The OCCI interface is modeled on the JDBC interface and, like the JDBC interface, is
easy to use. OCCI itself is built on top of OCI and provides the power and
performance of OCI using an object-oriented paradigm.

OCI is a C API to the Oracle database. It supports the entire Oracle feature set and
provides efficient access to both relational and object data, but it can be challenging to
use—particularly if you want to work with complex, object data types. Object types
are not natively supported in C, and simulating them in C is not easy. OCCI addresses
this by providing a simpler, object-oriented interface to the functionality of OCI. It
does this by defining a set of wrappers for OCI. By working with these higher-level
abstractions, developers can avail themselves of the underlying power of OCI to
manipulate objects in the server through an object-oriented interface that is
significantly easier to program.

The Oracle C++ Call Interface, OCCI, can be roughly divided into three sets of
functionalities, namely:

■ Associative relational access

■ Associative object access

■ Navigational access

OCCI Associative Relational and Object Interfaces
The associative relational API and object classes provide SQL access to the database.
Through these interfaces, SQL is executed on the server to create, manipulate, and
fetch object or relational data. Applications can access any data type on the server,
including the following:

■ Large objects

■ Objects/Structured types

■ Arrays

■ References

The OCCI Navigational Interface
The navigational interface is a C++ interface that lets you seamlessly access and
modify object-relational data in the form of C++ objects without using SQL. The C++
objects are transparently accessed and stored in the database as needed.

With the OCCI navigational interface, you can retrieve an object and navigate through
references from that object to other objects. Server objects are materialized as C++ class
instances in the application cache.

An application can use OCCI object navigational calls to perform the following
functions on the server's objects:

■ Create, access, lock, delete, and flush objects

■ Get references to the objects and navigate through them

Oracle Objects For OLE (OO4O)

4-8 Oracle Database Object-Relational Developer's Guide

Oracle Objects For OLE (OO4O)
Oracle Objects for OLE (OO4O) provides full support for accessing and manipulating
instances of REFs, value instances, variable-length arrays (VARRAYs), and nested tables
in an Oracle database server.

On Windows systems, you can use Oracle Objects for OLE (OO4O) to write
object-oriented database programs in Visual Basic or other environments that support
the COM protocol, such as Excel, ActiveX, and Active Server Pages.

Figure 4–1 illustrates the containment hierarchy for value instances of all types in
OO4O.

Figure 4–1 Supported Oracle Data Types

Instances of these types can be fetched from the database or passed as input or output
variables to SQL statements and PL/SQL blocks, including stored procedures and
functions. All instances are mapped to COM Automation Interfaces that provide
methods for dynamic attribute access and manipulation. These interfaces may be
obtained from:

■ The value property of an OraField object in a dynaset

■ The value property of an OraParameter object used as an input or an output
parameter in SQL Statements or PL/SQL blocks

■ An attribute of an object (REF)

■ An element in a collection (varray or a nested table)

See Also: Oracle C++ Call Interface Programmer's Guide for a
complete account of how to build applications with the Oracle C++
API

See Also: The "Server Objects" chapter of the Oracle Objects for
OLE Oracle Objects for OLE Developer's Guide for detailed
information and examples on using OO4O with Oracle objects

OraAttribute

OraAttribute

Element Values

OraObject

OraRef

OraCollection

OraField

OraParameter

OraBLOB

OraCLOB

OraBFILE

Value of all other scalar types

Java Tools for Accessing Oracle Objects

Object Support in Oracle Programming Environments 4-9

Representing Objects in Visual Basic (OraObject)
The OraObject interface is a representation of an Oracle embedded object or a value
instance. It contains a collection interface (OraAttributes) for accessing and
manipulating (updating and inserting) individual attributes of a value instance.
Individual attributes of an OraAttributes collection interface can be accessed by
using a subscript or the name of the attribute.

The following Visual Basic example illustrates how to access attributes of the Address
object in the person_tab table:

Dim Address OraObject
Set Person =

OraDatabase.CreateDynaset("select * from person_tab", 0&)
Set Address = Person.Fields("Addr").Value
Msgbox Address.Zip
Msgbox.Address.City

Representing REFs in Visual Basic (OraRef)
The OraRef interface represents an Oracle object reference (REF) as well as
referenceable objects in client applications. The object attributes are accessed in the
same manner as attributes of an object represented by the OraObject interface.
OraRef is derived from an OraObject interface by means of the containment
mechanism in COM. REF objects are updated and deleted independent of the context
they originated from, such as dynasets. The OraRef interface also encapsulates the
functionality for navigating through graphs of objects utilizing the Complex Object
Retrieval Capability (COR) in OCI.

Representing VARRAYs and Nested Tables in Visual Basic (OraCollection)
The OraCollection interface provides methods for accessing and manipulating
Oracle collection types, namely variable-length arrays (VARRAYs) and nested tables in
OO4O. Elements contained in a collection are accessed by subscripts.

The following Visual Basic example illustrates how to access attributes of the
EnameList object from the department table:

Dim EnameList OraCollection
Set Person =

OraDatabase.CreateDynaset("select * from department", 0&)
Set EnameList = Department.Fields("Enames").Value
'The following loop accesses all elements of
'the EnameList VArray
For I=1 to I=EnameList.Size

Msgbox EnameList(I)
Next I

Java Tools for Accessing Oracle Objects
Java has emerged as a powerful, modern object-oriented language that provides
developers with a simple, efficient, portable, and safe application development
platform. Oracle provides various ways to integrate Oracle object features with Java.
These interfaces enable you both to access SQL data from Java and to provide
persistent database storage for Java objects.

See Also: Oracle Call Interface Programmer's Guide for tips and
techniques for using OCI program effectively with objects

Java Tools for Accessing Oracle Objects

4-10 Oracle Database Object-Relational Developer's Guide

■ JDBC Access to Oracle Object Data

■ SQLJ Access to Oracle Object Data

■ Choosing a Data Mapping Strategy

■ Using JPublisher to Create Java Classes for JDBC and SQLJ Programs

■ Java Object Storage

■ Defining User-Defined Constructors in Java

■ JDeveloper

JDBC Access to Oracle Object Data
JDBC (Java Database Connectivity) is a set of Java interfaces to the Oracle server.
Oracle provides tight integration between objects and JDBC. You can map SQL types
to Java classes with considerable flexibility.

Oracle JDBC:

■ Allows access to objects and collection types (defined in the database) in Java
programs through dynamic SQL.

■ Translates types defined in the database into Java classes through default or
customizable mappings.

Version 2.0 of the JDBC specification supports object-relational constructs such as
user-defined (object) types. JDBC materializes Oracle objects as instances of particular
Java classes. Using JDBC to access Oracle objects involves creating the Java classes for
the Oracle objects and populating these classes. You can either:

■ Let JDBC materialize the object as a STRUCT. In this case, JDBC creates the classes
for the attributes and populates them for you.

■ Manually specify the mappings between Oracle objects and Java classes; that is,
customize your Java classes for object data. The driver then populates the
customized Java classes that you specify, which imposes a set of constraints on the
Java classes. To satisfy these constraints, you can choose to define your classes
according to either the SQLData interface or the ORAData interface.

SQLJ Access to Oracle Object Data
SQLJ provides access to server objects using SQL statements embedded in the Java
code:

■ You can use user-defined types in Java programs.

■ You can use JPublisher to map Oracle object and collection types into Java classes
to be used in the application.

■ The object types and collections in the SQL statements are checked at compile
time.

See Also: For complete information about JDBC, see the Oracle
Database JDBC Developer's Guide and Reference.

See Also: For complete information about SQLJ, see the Oracle
Database Java Developer's Guide.

Java Tools for Accessing Oracle Objects

Object Support in Oracle Programming Environments 4-11

Choosing a Data Mapping Strategy
Oracle SQLJ supports either strongly typed or weakly typed Java representations of
object types, reference types (REFs), and collection types (varrays and nested tables) to
be used in iterators or host expressions.

Strongly typed representations use a custom Java class that corresponds to a particular
object type, REF type, or collection type and must implement the interface
oracle.sql.ORAData. The Oracle JPublisher utility can automatically generate such
custom Java classes.

Weakly typed representations use the class oracle.sql.STRUCT (for objects),
oracle.sql.REF (for references), or oracle.sql.ARRAY (for collections).

JPublisher
Oracle JPublisher is a utility that generates Java classes to represent the following
user-defined database entities in your Java program:

■ Database object types

■ Database reference (REF) types

■ Database collection types (varrays or nested tables)

■ PL/SQL packages

JPublisher enables you to specify and customize the mapping of database object types,
reference types, and collection types (varrays or nested tables) to Java classes, in a
strongly typed paradigm.

Using JPublisher to Create Java Classes for JDBC and SQLJ Programs
Oracle lets you map Oracle object types, reference types, and collection types to Java
classes and preserve all the benefits of strong typing. You can:

■ Use JPublisher to automatically generate custom Java classes and use those classes
without any change.

■ Subclass the classes produced by JPublisher to create your own specialized Java
classes.

■ Manually code custom Java classes without using JPublisher if the classes meet the
requirements stated in Oracle Database JPublisher User's Guide.

We recommend that you use JPublisher and subclass when the generated classes do
not do everything you need.

What JPublisher Produces for a User-Defined Object Type
When you run JPublisher for a user-defined object type, it automatically creates the
following:

■ A custom object class to act as a type definition to correspond to your Oracle object
type

This class includes getter and setter methods for each attribute. The method names
are of the form getXxx() and setXxx() for attribute xxx.

Also, you can optionally instruct JPublisher to generate wrapper methods in your
class that invoke the associated Oracle object methods executing in the server.

See Also: Oracle Database JPublisher User's Guide

Java Tools for Accessing Oracle Objects

4-12 Oracle Database Object-Relational Developer's Guide

■ A related custom reference class for object references to your Oracle object type

This class includes a getValue() method that returns an instance of your custom
object class, and a setValue() method that updates an object value in the
database, taking as input an instance of the custom object class.

When you run JPublisher for a user-defined collection type, it automatically creates the
following:

■ A custom collection class to act as a type definition to correspond to your Oracle
collection type

This class includes overloaded getArray() and setArray() methods to
retrieve or update a collection as a whole, a getElement() method and
setElement() method to retrieve or update individual elements of a collection,
and additional utility methods.

JPublisher-produced custom Java classes in any of these categories implement the
ORAData interface and the getFactory() method.

Java Object Storage
JPublisher enables you to construct Java classes that map to existing SQL types. You
can then access the SQL types from a Java application using JDBC.

You can also go in the other direction. That is, you can create SQL types that map to
existing Java classes. This capability enables you to provide persistent storage for Java
objects. Such SQL types are called SQL types of Language Java, or SQLJ object types.
They can be used as the type of an object, an attribute, a column, or a row in an object
table. You can navigationally access objects of such types—Java objects—through
either object references or foreign keys, and you can query and manipulate such
objects from SQL.

You create SQLJ types with a CREATE TYPE statement as you do other user-defined
SQL types. For SQLJ types, two special elements are added to the CREATE TYPE
statement:

■ An EXTERNAL NAME phrase, used to identify the Java counterpart for each SQLJ
attribute and method and the Java class corresponding to the SQLJ type itself

■ A USING clause, to specify how the SQLJ type is to be represented to the server.
The USING clause specifies the interface used to retrieve a SQLJ type and the kind
of storage.

For example:

Example 4–2 Mapping SQL Types to Java Classes

-- Mapping SQL Types to Java Classes example, not sample schema
CREATE TYPE full_address AS OBJECT (a NUMBER);
/

CREATE OR REPLACE TYPE person_t AS OBJECT
 EXTERNAL NAME 'Person' LANGUAGE JAVA
 USING SQLData (
 ss_no NUMBER (9) EXTERNAL NAME 'socialSecurityNo',
 name varchar(100) EXTERNAL NAME 'name',
 address full_address EXTERNAL NAME 'addrs',
 birth_date date EXTERNAL NAME 'birthDate',

See Also: The Oracle Database JPublisher User's Guide for more
information about using JPublisher.

Java Tools for Accessing Oracle Objects

Object Support in Oracle Programming Environments 4-13

 MEMBER FUNCTION age RETURN NUMBER EXTERNAL NAME 'age () return int',
 MEMBER FUNCTION addressf RETURN full_address
 EXTERNAL NAME 'get_address () return long_address',
 STATIC function createf RETURN person_t EXTERNAL NAME 'create ()
 return Person',
 STATIC function createf (name VARCHAR2, addrs full_address, bDate DATE)
 RETURN person_t EXTERNAL NAME 'create (java.lang.String, Long_address,
 oracle.sql.date) return Person',
 ORDER member FUNCTION compare (in_person person_t) RETURN NUMBER
 EXTERNAL NAME 'isSame (Person) return int')
/

SQLJ types use the corresponding Java class as the body of the type; you do not
specify a type body in SQL to contain implementations of the type's methods as you
do with ordinary object types.

Representing SQLJ Types to the Server
How a SQLJ type is represented to the server and stored depends on the interfaces
implemented by the corresponding Java class. Currently, Oracle supports a
representation of SQLJ types only for Java classes that implement a SQLData or
ORAData interface. These are represented to the server and are accessible through
SQL. A representation for Java classes that implement the java.io.Serializable
interface is not currently supported.

In a SQL representation, the attributes of the type are stored in columns like attributes
of ordinary object types. With this representation, all attributes are public because
objects are accessed and manipulated through SQL statements, but you can use
triggers and constraints to ensure the consistency of the object data.

For a SQL representation, the USING clause must specify either SQLData or ORAData,
and the corresponding Java class must implement one of those interfaces. The
EXTERNAL NAME clause for attributes is optional.

Creating SQLJ Object Types
The SQL statements to create SQLJ types and specify their mappings to Java are placed
in a file called a deployment descriptor. Related SQL constraints and privileges are
also specified in this file. The types are created when the file is executed.

Below is an overview of the process of creating SQL versions of Java types/classes:

1. Design the Java types.

2. Generate the Java classes.

3. Create the SQLJ object type statements.

4. Construct the JAR file. This is a single file that contains all the classes needed.

5. Using the loadjava utility, install the Java classes defined in the JAR file.

6. Execute the statements to create the SQLJ object types.

Additional Notes About Mapping
The following are additional notes to consider when mapping of Java classes to SQL
types:

■ You can map a SQLJ static function to a user-defined constructor in the Java class.
The return value of this function is of the user-defined type in which the function
is locally defined.

Java Tools for Accessing Oracle Objects

4-14 Oracle Database Object-Relational Developer's Guide

■ Java static variables are mapped to SQLJ static methods that return the value of the
corresponding static variable identified by EXTERNAL NAME. The EXTERNAL NAME
clause for an attribute is optional with a SQLData or ORAData representation.

■ Every attribute in a SQLJ type of a SQL representation must map to a Java field,
but not every Java field must be mapped to a corresponding SQLJ attribute: you
can omit Java fields from the mapping.

■ You can omit classes: you can map a SQLJ type to a non-root class in a Java class
hierarchy without also mapping SQLJ types to the root class and intervening
superclasses. Doing this enables you to hide the superclasses while still including
attributes and methods inherited from them.

However, you must preserve the structural correspondence between nodes in a
class hierarchy and their counterparts in a SQLJ type hierarchy. In other words, for
two Java classes j_A and j_B that are related through inheritance and are mapped
to two SQL types s_A and s_B, respectively, there must be exactly one
corresponding node on the inheritance path from s_A to s_B for each node on the
inheritance path from j_A to j_B.

■ You can map a Java class to multiple SQLJ types as long as you do not violate the
restriction in the preceding paragraph. In other words, no two SQLJ types mapped
to the same Java class can have a common supertype ancestor.

■ If all Java classes are not mapped to SQLJ types, it is possible that an attribute of a
SQLJ object type might be set to an object of an unmapped Java class. Specifically,
to a class occurring above or below the class to which the attribute is mapped in an
inheritance hierarchy. If the object's class is a superclass of the attribute's
type/class, an error is raised. If it is a subclass of the attribute's type/class, the
object is mapped to the most specific type in its hierarchy for which a SQL
mapping exists

Evolving SQLJ Types
The ALTER TYPE statement enables you to evolve a type by, for example, adding or
dropping attributes or methods.

When a SQLJ type is evolved, an additional validation is performed to check the
mapping between the class and the type. If the class and the evolved type match, the
type is marked valid. Otherwise, the type is marked as pending validation.

Being marked as pending validation is not the same as being marked invalid. A type
that is pending validation can still be manipulated with ALTER TYPE and GRANT
statements, for example.

If a type that has a SQL representation is marked as pending evaluation, you can still
access tables of that type using any DML or SELECT statement that does not require a
method invocation.

You cannot, however, execute DML or SELECT statements on tables of a type that has
a serializable representation and has been marked as pending validation. Data of a
serializable type can be accessed only navigationally, through method invocations.
These are not possible with a type that is pending validation. However, you can still
re-evolve the type until it passes validation.

See "Type Evolution" on page 8-6.

See Also: The Oracle Database JPublisher User's Guide for
JPublisher examples of object mapping

Java Tools for Accessing Oracle Objects

Object Support in Oracle Programming Environments 4-15

Constraints
For SQLJ types having a SQL representation, the same constraints can be defined as for
ordinary object types.

Constraints are defined on tables, not on types, and are defined at the column level.
The following constraints are supported for SQLJ types having a SQL representation:

■ Unique constraints

■ Primary Key

■ Check constraints

■ NOT NULL constraints on attributes

■ Referential constraints

The IS OF TYPE constraint on column substitutability is supported, too, for SQLJ
types having a SQL representation. See "Constraining Substitutability" on page 2-28.

Querying SQLJ Objects
SQLJ types can be queried just like ordinary SQL object types. Methods called in a
SELECT statement must not attempt to change attribute values.

Inserting Java Objects
Inserting a row in a table containing a column of a SQLJ type requires a call to the
type's constructor function to create a Java object of that type.

The implicit, system-generated constructor can be used, or a static function can be
defined that maps to a user-defined constructor in the Java class.

Updating SQLJ Objects
SQLJ objects can be updated either by using an UPDATE statement to modify the value
of one or more attributes, or by invoking a method that updates the attributes and
returns SELF—that is, returns the object itself with the changes made.

For example, suppose that raise() is a member function that increments the salary
field/attribute by a specified amount and returns SELF. The following statement gives
every employee in the object table employee_objtab a raise of 1000:

UPDATE employee_objtab SET c=c.raise(1000);

A column of a SQLJ type can be set to NULL or to another column using the same
syntax as for ordinary object types. For example, the following statement assigns
column d to column c:

UPDATE employee_reltab SET c=d;

Defining User-Defined Constructors in Java
When you implement a user-defined constructor in Java, the string supplied as the
implementing routine must correspond to a static function. For the return type of the
function, specify the Java type mapped to the SQL type.

Example 4–3 is an example of a type declaration that involves a user-defined
constructor implemented in Java.

Example 4–3 Defining a User-Defined Constructor in Java

-- Defining a User-Defined Constructor in Java example, not sample schema

XML

4-16 Oracle Database Object-Relational Developer's Guide

CREATE TYPE person1_typ AS OBJECT
 EXTERNAL NAME 'pkg1.J_Person' LANGUAGE JAVA
 USING SQLData(
 name VARCHAR2(30),
 age NUMBER,
 CONSTRUCTOR FUNCTION person1_typ(SELF IN OUT NOCOPY person1_typ, name VARCHAR2,
 age NUMBER) RETURN SELF AS RESULT
 AS LANGUAGE JAVA
 NAME 'pkg1.J_Person.J_Person(java.lang.String, int) return J_Person')
/
DROP TYPE person1_typ FORCE;
DROP TYPE person_t FORCE;
DROP TYPE full_address FORCE;
DROP TYPE person FORCE;
DROP LIBRARY person_lib;
SPOOL OFF
COMMIT;

JDeveloper
Oracle JDeveloper is a full-featured, cross-platform, integrated development
environment for creating multitier Java applications that is well integrated with Oracle
Application Server and Database.

Oracle JDeveloper enables you to develop, debug, and deploy Java client applications,
dynamic HTML applications, web and application server components, JavaBean
components, and database stored procedures based on industry-standard models.

JDeveloper is also the integrated development environment for ADF and TopLink.

Application Development Framework (ADF)
ADF is a framework for building scalable enterprise Java EE applications. Developers
can use ADF to build applications where the application data is persisted to Oracle
Object tables as well as other schema objects.

TopLink
TopLink is a framework for mapping Java objects to a variety of persistence
technologies, including databases, and provides facilities to build applications
leveraging Oracle Objects.

XML
XMLType views wrap existing relational and object-relational data in XML formats.
These views are similar to object views. Each row of an XMLType view corresponds to
an XMLType instance. The object identifier for uniquely identifying each row in the
view can be created using an expression such as extract() on the XMLType value.

Utilities Providing Support for Objects
This section describes several Oracle utilities that provide support for Oracle objects.

This section contains these topics:

See Also: Oracle XML DB Developer's Guide for information and
examples on using XML with Oracle objects

Utilities Providing Support for Objects

Object Support in Oracle Programming Environments 4-17

■ Import/Export of Object Types

■ SQL*Loader

Import/Export of Object Types
Export and Import utilities move data into and out of Oracle databases. They also back
up or archive data and aid migration to different releases of the Oracle RDBMS.

Export and Import support object types. Export writes object type definitions and all
of the associated data to the dump file. Import then re-creates these items from the
dump file.

Types
The definition statements for derived types are exported. On an Import, a subtype
may be created before the supertype definition has been imported. In this case, the
subtype is created with compilation errors, which may be ignored. The type is
revalidated after its supertype is created.

Object View Hierarchies
View definitions for all views belonging to a view hierarchy are exported.

SQL*Loader
The SQL*Loader utility moves data from external files into tables in an Oracle
database. The files may contain data consisting of basic scalar data types, such as
INTEGER, CHAR, or DATE, as well as complex user-defined data types such as row and
column objects (including objects that have object, collection, or REF attributes),
collections, and LOBs. Currently, SQL*Loader supports single-level collections only:
you cannot yet use SQL*Loader to load multilevel collections, that is, collections
whose elements are, or contain, other collections. SQL*Loader uses control files, which
contain SQL*Loader data definition language (DDL) statements, to describe the
format, content, and location of the datafiles.

SQL*Loader provides two approaches to loading data:

■ Conventional path loading, which uses the SQL INSERT statement and a bind
array buffer to load data into database tables

■ Direct path loading, which uses the Direct Path Load API to write data blocks
directly to the database on behalf of the SQL*Loader client.

Direct path loading does not use a SQL interface and thus avoids the overhead of
processing the associated SQL statements. Consequently, direct path loading
generally provides much better performance than conventional path loading.

Either approach can be used to load data of supported object and collection data types.

See Also: Oracle Database Utilities for instructions on how to use
the Import and Export utilities

See Also: Oracle Database Utilities for instructions on how to use
SQL*Loader

Utilities Providing Support for Objects

4-18 Oracle Database Object-Relational Developer's Guide

5

Support for Collection Data Types 5-1

5 Support for Collection Data Types

This chapter explains how to create and manage these collection types: varrays and
nested tables.

This chapter contains these topics:

■ Collection Data Types

■ Multilevel Collection Types

■ Operations on Collection Data Types

■ Partitioning Tables That Contain Oracle Objects

Collection Data Types
Oracle supports the varray and nested table collection data types.

■ A varray is an ordered collection of elements.

■ A nested table can have any number of elements and is unordered.

If you need to store only a fixed number of items, or loop through the elements in
order, or often need to retrieve and manipulate the entire collection as a value, then
use a varray.

If you need to run efficient queries on a collection, handle arbitrary numbers of
elements, or perform mass insert, update, or delete operations, then use a nested table.
See "Design Considerations for Collections" on page 9-8.

This section includes the following topics:

■ Creating a Collection Type

■ Creating a Collection Type

■ Creating an Instance of a VARRAY or Nested Table

■ Constructor Methods for Collections

■ Varrays

■ Nested Tables

■ Increasing the Size and Precision of VARRAY and Nested Table Elements

■ Increasing VARRAY Limit Size

See Also: Oracle Database PL/SQL Language Reference for a complete
introduction to collections

Collection Data Types

5-2 Oracle Database Object-Relational Developer's Guide

■ Creating a Varray Containing LOB References

Creating a Collection Type
This section shows the creation of a nested table type. Creation of a VARRAY type is
demonstrated in "Varrays" on page 5-3.

Example 5–1 demonstrates creating a person_typ object and a people_typ as a
nested table type of person_typ objects, which are both used in subsequent
examples in this chapter.

Example 5–1 CREATE TYPE person_typ for Subsequent Examples

CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER,
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ));
/

CREATE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
 MEMBER PROCEDURE display_details (SELF IN OUT NOCOPY person_typ) IS
 BEGIN
 -- use the put_line procedure of the DBMS_OUTPUT package to display details
 DBMS_OUTPUT.put_line(TO_CHAR(idno) || ' - ' || name || ' - ' || phone);
 END;
END;
/

CREATE TYPE people_typ AS TABLE OF person_typ; -- nested table type
/

Creating an Instance of a VARRAY or Nested Table
You create an instance of a collection type in the same way that you create an instance
of any other object type, namely, by calling the constructor method of the type. The
name of a constructor method is simply the name of the type. You specify the elements
of the collection as a comma-delimited list of arguments to the method, for example.

(person_typ(1, 'John Smith', '1-650-555-0135'),

Calling a constructor method with an empty list creates an empty collection of that
type. Note that an empty collection is an actual collection that happens to be empty; it
is not the same as a null collection. See "Design Considerations for Nested Tables" on
page 9-10 for more information on using nested tables.

Constructor Methods for Collections
You can use a constructor method in a SQL statement to insert values into a nested
table.

Example 5–2 first creates a table that contains an instance of the nested table type
people_typ, named people_column, and then shows how to use the constructor

Collection Data Types

Support for Collection Data Types 5-3

method in a SQL statement to insert values into people_typ. This example uses a
literal invocation of the constructor method.

Example 5–2 Using the Constructor Method to Insert Values into a Nested Table

-- Requires Ex. 5-1
CREATE TABLE people_tab (
 group_no NUMBER,
 people_column people_typ) -- an instance of nested table
 NESTED TABLE people_column STORE AS people_column_nt; -- storage table for NT

INSERT INTO people_tab VALUES (
 100,
 people_typ(person_typ(1, 'John Smith', '1-650-555-0135'),
 person_typ(2, 'Diane Smith', NULL)));

When you declare a table column to be of an object type or collection type, you can
include a DEFAULT clause. This provides a value to use in cases where you do not
explicitly specify a value for the column. The DEFAULT clause must contain a literal
invocation of the constructor method for that object or collection.

Example 5–3 shows how to use literal invocations of constructor methods to specify
defaults for the person_typ object and the people_typ nested table:

Example 5–3 Creating the department_persons Table Using the DEFAULT Clause

-- requires Ex. 5-1
CREATE TABLE department_persons (
 dept_no NUMBER PRIMARY KEY,
 dept_name CHAR(20),
 dept_mgr person_typ DEFAULT person_typ(10,'John Doe',NULL),
 dept_emps people_typ DEFAULT people_typ()) -- instance of nested table type
 NESTED TABLE dept_emps STORE AS dept_emps_tab;

INSERT INTO department_persons VALUES
 (101, 'Physical Sciences', person_typ(65,'Vrinda Mills', '1-650-555-0125'),
 people_typ(person_typ(1, 'John Smith', '1-650-555-0135'),
 person_typ(2, 'Diane Smith', NULL)));
INSERT INTO department_persons VALUES
 (104, 'Life Sciences', person_typ(70,'James Hall', '1-415-555-0101'),
 people_typ()); -- an empty people_typ table

Note that people_typ() is a literal invocation of the constructor method for an
empty people_typ nested table.

The department_persons table can be queried in two ways as shown in
Example 5–16 and Example 5–17.

Varrays
A varray is an ordered set of data elements. All elements of a given varray are of the
same data type or a subtype of the declared one. Each element has an index, which is a
number corresponding to the position of the element in the array. The index number is
used to access a specific element.

When you define a varray, you specify the maximum number of elements it can
contain, although you can change this number later. The number of elements in an
array is the size of the array.

Collection Data Types

5-4 Oracle Database Object-Relational Developer's Guide

The following statement creates an array type email_list_arr that has no more
than ten elements, each of data type VARCHAR2(80).

CREATE TYPE email_list_arr AS VARRAY(10) OF VARCHAR2(80);
/

Example 5–4 creates a VARRAY type that is an array of an object type. The phone_
varray_typ VARRAY type is used as a data type for a column in the dept_phone_
list table. The INSERT statements show how to insert values into phone_varray_
typ by invoking the constructors for the varray phone_varray_typ and the object
phone_typ.

Example 5–4 Creating and Populating a VARRAY Data Type

CREATE TYPE phone_typ AS OBJECT (
 country_code VARCHAR2(2),
 area_code VARCHAR2(3),
 ph_number VARCHAR2(7));
/
CREATE TYPE phone_varray_typ AS VARRAY(5) OF phone_typ;
/
CREATE TABLE dept_phone_list (
 dept_no NUMBER(5),
 phone_list phone_varray_typ);

INSERT INTO dept_phone_list VALUES (
 100,
 phone_varray_typ(phone_typ ('01', '650', '5550123'),
 phone_typ ('01', '650', '5550148'),
 phone_typ ('01', '650', '5550192')));

Creating an array type, as with a SQL object type, does not allocate space. It defines a
data type, which you can use as:

■ The data type of a column of a relational table.

■ An object type attribute.

■ The type of a PL/SQL variable, parameter, or function return value.

A varray is normally stored inline, that is, in the same tablespace as the other data in
its row. If it is sufficiently large, Oracle stores it as a BLOB. See "Storage Considerations
for Varrays" on page 9-9.

You can create a VARRAY type of XMLType or LOB type for procedural purposes, such
as in PL/SQL or view queries. However, database storage for varrays of these types is
not supported. Thus you cannot create an object table or an object type column of a
varray type of XMLType or LOB type.

Nested Tables
A nested table is an unordered set of data elements, all of the same data type. No
maximum is specified in the definition of the table, and the order of the elements is not
preserved. You select, insert, delete, and update in a nested table just as you do with
ordinary tables using the TABLE expression.

See Also: Oracle Database SQL Language Reference for information
and examples on the STORE AS LOB clause of the CREATE TABLE
statement

Collection Data Types

Support for Collection Data Types 5-5

A nested table can be viewed as a single column. If the column in a nested table is an
object type, the table can also be viewed as a multi-column table, with a column for
each attribute of the object type.

To declare nested table types, use the CREATE TYPE ... AS TABLE OF statement. For
example:

CREATE TYPE people_typ AS TABLE OF person_typ;

A table type definition does not allocate space. It defines a type, which you can use as:

■ The data type of a column of a relational table.

■ An object type attribute.

■ A PL/SQL variable, parameter, or function return type.

Storing Elements of Nested Tables
Elements of a nested table are actually stored in a separate storage table.

Oracle stores nested table data in a single storage table associated with the object table
for both nested table types that are columns in a relational table or attributes in an
object table. The storage table contains a column that identifies the parent table row or
object that each element of the nested table belongs to. See Figure 9–2, "Nested Table
Storage" on page 9-11.

The NESTED TABLE..STORE AS clause specifies storage names for nested tables.
Storage names are used to create an index on a nested table.

Example 5–5 demonstrates creating and populating a nested table, and specifying the
nested table storage using the person_typ object and the people_typ nested table
as defined in Example 5–1.

Example 5–5 Creating and Populating Simple Nested Tables

-- Requires 5-1
CREATE TABLE students (
 graduation DATE,
 math_majors people_typ, -- nested tables (empty)
 chem_majors people_typ,
 physics_majors people_typ)
 NESTED TABLE math_majors STORE AS math_majors_nt -- storage tables
 NESTED TABLE chem_majors STORE AS chem_majors_nt
 NESTED TABLE physics_majors STORE AS physics_majors_nt;

CREATE INDEX math_idno_idx ON math_majors_nt(idno);
CREATE INDEX chem_idno_idx ON chem_majors_nt(idno);
CREATE INDEX physics_idno_idx ON physics_majors_nt(idno);

INSERT INTO students (graduation) VALUES ('01-JUN-03');
UPDATE students
 SET math_majors =
 people_typ (person_typ(12, 'Bob Jones', '650-555-0130'),
 person_typ(31, 'Sarah Chen', '415-555-0120'),
 person_typ(45, 'Chris Woods', '415-555-0124')),
 chem_majors =
 people_typ (person_typ(51, 'Joe Lane', '650-555-0140'),
 person_typ(31, 'Sarah Chen', '415-555-0120'),
 person_typ(52, 'Kim Patel', '650-555-0135')),
 physics_majors =
 people_typ (person_typ(12, 'Bob Jones', '650-555-0130'),

Collection Data Types

5-6 Oracle Database Object-Relational Developer's Guide

 person_typ(45, 'Chris Woods', '415-555-0124'))
WHERE graduation = '01-JUN-03';

SELECT m.idno math_id, c.idno chem_id, p.idno physics_id FROM students s,
 TABLE(s.math_majors) m, TABLE(s.chem_majors) c, TABLE(s.physics_majors) p;

A convenient way to access the elements of a nested table individually is to use a
nested cursor or the TABLE function. See "Querying Collections" on page 5-12.

Specifying a Tablespace When Storing a Nested Table
A nested table can be stored in a different tablespace than its parent table. In
Example 5–6, the nested table is stored in the system tablespace:

Example 5–6 Specifying a Different Tablespace for Storing a Nested Table

-- Requires Ex. 5-1, must remove code in Ex. 5-2 if created
CREATE TABLE people_tab (
 people_column people_typ)
 NESTED TABLE people_column STORE AS people_column_nt (TABLESPACE system);

If the TABLESPACE clause is not specified, then the storage table of the nested table is
created in the tablespace where the parent table is created. For multilevel nested tables,
Oracle creates the child table in the same tablespace as its immediately preceding
parent table.

You can issue an ALTER TABLE.. MOVE statement to move a table to a different
tablespace. If you do this on a table with nested table columns, only the parent table
moves; no action is taken on the storage tables of the nested table. To move a storage
table for a nested table to a different tablespace, issue ALTER TABLE.. MOVE on the
storage table. For example:

ALTER TABLE people_tab MOVE TABLESPACE system; -- moving table
ALTER TABLE people_column_nt MOVE TABLESPACE example; -- moving storage table

Now the people_tab table is in the system tablespace and the nested table storage
is stored in the example tablespace.

Increasing the Size and Precision of VARRAY and Nested Table Elements
When the element type of a VARRAY type or nested table type is a variable character, or
a RAW or numeric type, you can increase the size of the variable character or RAW type,
or increase the precision of the numeric type. A new type version is generated for the
VARRAY type or nested table type.

You make these changes using an ALTER TYPE..MODIFY statement, which has these
options:

■ INVALIDATE: Invalidates all dependent objects

■ CASCADE: Propagates the change to its type and table dependents

Example 5–7 increases the sizes of a VARRAY and a nested table element type.

Example 5–7 Increasing the Size of an Element Type in a VARRAY and Nested Table

CREATE TYPE email_list_arr AS VARRAY(10) OF VARCHAR2(80);

See Also: "ALTER TYPE Statement for Type Evolution" on page 8-14
for further description of INVALIDATE and CASCADE

Collection Data Types

Support for Collection Data Types 5-7

/
ALTER TYPE email_list_arr MODIFY ELEMENT TYPE VARCHAR2(100) CASCADE;

CREATE TYPE email_list_tab AS TABLE OF VARCHAR2(30);
/
ALTER TYPE email_list_tab MODIFY ELEMENT TYPE VARCHAR2(40) CASCADE;

Increasing VARRAY Limit Size
The ALTER TYPE ... MODIFY LIMIT syntax allows you to increase the number of
elements of a VARRAY type. If the number is increased, a new type version is generated
for the VARRAY type, and becomes part of the type change history.

The ALTER TYPE ... MODIFY LIMIT statement has these options:

■ INVALIDATE: Invalidates all dependent objects

■ CASCADE: Propagates the change to its type and table dependents

Example 5–8 Increasing the VARRAY Limit Size

-- if you have already creating following types, drop them.
DROP TYPE email_list_tab FORCE;
DROP TYPE email_list_arr FORCE;
CREATE TYPE email_list_arr AS VARRAY(10) OF VARCHAR2(80);
/
CREATE TYPE email_list_typ AS OBJECT (
 section_no NUMBER,
 emails email_list_arr);
/

CREATE TYPE email_varray_typ AS VARRAY(5) OF email_list_typ;
/

ALTER TYPE email_varray_typ MODIFY LIMIT 100 INVALIDATE;

When a VARRAY type is altered, changes are propagated to the dependent tables. See
"Propagating VARRAY Size Change" on page 9-10.

Creating a Varray Containing LOB References
To create a varray of LOB references, first define a VARRAY type of type REF email_
list_typ. Note: email_list_typ was defined in Example 5–8. Next, create a table
dept_email_list and define a column email_addrs of the array type in it.

Example 5–9 Creating a VARRAY Containing LOB References

-- Requires Ex. 5-8
CREATE TYPE ref_email_varray_typ AS VARRAY(5) OF REF email_list_typ;
/

CREATE TABLE dept_email_list (
 dept_no NUMBER,
 email_addrs ref_email_varray_typ)
 VARRAY email_addrs STORE AS LOB dept_emails_lob3;

Multilevel Collection Types

5-8 Oracle Database Object-Relational Developer's Guide

Multilevel Collection Types
Multilevel collection types are collection types whose elements are themselves directly
or indirectly another collection type. Possible multilevel collection types are:

■ Nested table of nested table type

■ Nested table of varray type

■ Varray of nested table type

■ Varray of varray type

■ Nested table or varray of a user-defined type that has an attribute that is a nested
table or varray type

Like single-level collection types, multilevel collection types:

■ Can be used as columns in a relational table or with object attributes in an object
table.

■ Require that both the source and the target be of the same declared data type for
assignment.

This section contains the following topics:

■ Nested Table Storage Tables for Multilevel Collection Types

■ Varray Storage for Multilevel Collections

■ Constructors for Multilevel Collections

Nested Table Storage Tables for Multilevel Collection Types
A nested table type column or object table attribute requires a storage table to store
rows for all its nested tables as described in "Storing Elements of Nested Tables" on
page 5-5. With a multilevel nested table collection of nested tables, you must specify
nested-table storage clauses for both the inner set and the outer set of nested tables.

Example 5–10 creates the multilevel collection type nt_country_typ, a nested table
of nested tables. The example models a system of corporate regions in which each
region has a nested table collection of the countries, and each country has a nested
table collection of its locations. This example requires the regions, countries, and
locations tables of the Oracle HR sample schema.

In Example 5–10, the SQL statements create the table region_tab, which contains the
column countries, whose type is a multilevel collection, nt_country_typ. This
multilevel collection is a nested table of an object type that has the nested table
attribute locations. Separate nested table clauses are provided for the outer
countries nested table and for the inner locations nested table.

Example 5–10 Multilevel Nested Table Storage

-- Requires the HR sample schema
CREATE TYPE location_typ AS OBJECT (
 location_id NUMBER(4),

See Also: "Unnesting Queries with Multilevel Collections" on
page 5-14

See Also: Oracle Database Sample Schemas for information on using
sample schemas

Multilevel Collection Types

Support for Collection Data Types 5-9

 street_address VARCHAR2(40),
 postal_code VARCHAR2(12),
 city VARCHAR2(30),
 state_province VARCHAR2(25));
/

CREATE TYPE nt_location_typ AS TABLE OF location_typ; -- nested table type
/

CREATE TYPE country_typ AS OBJECT (
 country_id CHAR(2),
 country_name VARCHAR2(40),
 locations nt_location_typ); -- inner nested table
/

CREATE TYPE nt_country_typ AS TABLE OF country_typ; -- multilevel collection type
/

CREATE TABLE region_tab (
 region_id NUMBER,
 region_name VARCHAR2(25),
 countries nt_country_typ) -- outer nested table
 NESTED TABLE countries STORE AS nt_countries_tab
 (NESTED TABLE locations STORE AS nt_locations_tab);

In Example 5–10 you can refer to the inner nested table locations by name because
this nested table is a named attribute of an object. However, if the inner nested table is
not an attribute of an object, it has no name. The keyword COLUMN_VALUE is provided for
this case.

Example 5–11 shows keyword COLUMN_VALUE used in place of a name for an inner
nested table.

Example 5–11 Multilevel Nested Table Storage Using the COLUMN_VALUE Keyword

CREATE TYPE inner_table AS TABLE OF NUMBER;
/
CREATE TYPE outer_table AS TABLE OF inner_table;
/
CREATE TABLE tab1 (
 col1 NUMBER, -- inner nested table, unnamed
 col2 outer_table)
NESTED TABLE col2 STORE AS col2_ntab
 (NESTED TABLE COLUMN_VALUE STORE AS cv_ntab);

Example 5–12 shows how to specify physical attributes for the storage tables in the
nested table clause.

Example 5–12 Specifying Physical Attributes for Nested Table Storage

-- Requires Ex. 5-10
-- drop the following if you have previously created it
DROP TABLE region_tab FORCE;

CREATE TABLE region_tab (
 region_id NUMBER,
 region_name VARCHAR2(25),
 countries nt_country_typ)
 NESTED TABLE countries STORE AS nt_countries_tab (
 (PRIMARY KEY (NESTED_TABLE_ID, country_id))

Multilevel Collection Types

5-10 Oracle Database Object-Relational Developer's Guide

 ORGANIZATION INDEX COMPRESS
 NESTED TABLE locations STORE AS nt_locations_tab);

Every nested table storage table contains a column, referenceable by NESTED_TABLE_
ID, that keys rows in the storage table to the associated row in the parent table. A
parent table that is itself a nested table has two system-supplied ID columns:

■ A system-supplied ID column that is referenceable by NESTED_TABLE_ID, which
keys its rows back to rows in its parent table.

■ A system-supplied ID column that is hidden and referenced by the NESTED_
TABLE_ID column in its nested table children.

In Example 5–12, nested table countries is made an index-organized table (IOT) by
adding the ORGANIZATION INDEX clause and assigning the nested table a primary
key in which the first column is NESTED_TABLE_ID. This column contains the ID of
the row in the parent table with which a storage table row is associated. Specifying a
primary key with NESTED_TABLE_ID as the first column and index-organizing the
table causes Oracle database to physically cluster all the nested table rows that belong
to the same parent row, for more efficient access.

If you do not specify a primary key with a NESTED_TABLE_ID column, then the
database automatically creates a b-tree index on the NESTED_TABLE_ID column for
better performance.

Each nested table needs its own table storage clause, so you must have as many nested
table storage clauses as you have levels of nested tables in a collection. See "Nested
Table Storage" on page 9-10.

Varray Storage for Multilevel Collections
Multilevel varrays are stored in one of two ways, depending on whether the varray is
a varray of varrays or a varray of nested tables.

■ In a varray of varrays, the entire varray is stored inline in the row unless it is larger
than approximately 4000 bytes or LOB storage is explicitly specified.

■ In a varray of nested tables, the entire varray is stored in a LOB, with only the LOB
locator stored in the row. There is no storage table associated with nested table
elements of a varray.

You can explicitly specify LOB storage for varrays. The following example does this
for a nested table of varray elements.

Example 5–13 shows explicit LOB storage specified for a varray of varray type.

Example 5–13 Specifying LOB Storage for a VARRAY of VARRAY Type

-- Requires Ex. 5-8, drop following if created

DROP TYPE email_varray_typ FORCE;
CREATE TYPE email_list_typ2 AS OBJECT (
 section_no NUMBER,
 emails email_list_arr);
/

CREATE TYPE email_varray_typ AS VARRAY(5) OF email_list_typ2;
/

CREATE TABLE dept_email_list2 (
 dept_no NUMBER,
 email_addrs email_varray_typ)

Multilevel Collection Types

Support for Collection Data Types 5-11

 VARRAY email_addrs STORE AS LOB dept_emails_lob2;

See "Storage Considerations for Varrays" on page 9-9. See also Oracle Database
SecureFiles and Large Objects Developer's Guide.

Example 5–14 Specifying LOB Storage for a Nested Table of VARRAYs

-- drop the following types if you have created them
DROP TYPE email_list_typ FORCE;
DROP TABLE dept_email_list FORCE;
DROP TYPE email_list_arr FORCE;

CREATE TYPE email_list_arr AS VARRAY(10) OF VARCHAR2(80);
/

CREATE TYPE email_list_typ AS TABLE OF email_list_arr;
/

CREATE TABLE dept_email_list (
 dept_no NUMBER,
 email_addrs email_list_typ)
 NESTED TABLE email_addrs STORE AS email_addrs_nt
 (
VARRAY COLUMN_VALUE STORE AS LOB
 dept_emails_lob);

Example 5–14 shows the COLUMN_VALUE keyword used with varrays. See
Example 5–11 for discussion of this keyword and its use with nested tables.

Constructors for Multilevel Collections
Multilevel collection types are created by calling the constructor of the respective type,
just like single-level collections and other object types. The constructor for a multilevel
collection type is a system-defined function that has the same name as the type and
returns a new instance of it. Constructor parameters have the names and types of the
attributes of the object type.

Example 5–15 shows the constructor call for the multilevel collection type nt_
country_typ. The nt_country_typ constructor calls the country_typ
constructor, which calls the nt_location_typ, which calls the location_typ
constructor.

Example 5–15 Using Constructors for Multilevel Collections

-- Requires 5-10 and HR sample schema
INSERT INTO region_tab
VALUES(1, 'Europe', nt_country_typ(
 country_typ('IT', 'Italy', nt_location_typ (
 location_typ(1000, '1297 Via Cola di Rie','00989','Roma', ''),
 location_typ(1100, '93091 Calle della Testa','10934','Venice',''))
),
 country_typ('CH', 'Switzerland', nt_location_typ (
 location_typ(2900, '20 Rue des Corps-Saints', '1730', 'Geneva', 'Geneve'),
 location_typ(3000, 'Murtenstrasse 921', '3095', 'Bern', 'BE'))
),

Note: nt_country_typ is a multilevel collection because it is a
nested table that contains another nested table as an attribute.

Operations on Collection Data Types

5-12 Oracle Database Object-Relational Developer's Guide

 country_typ('UK', 'United Kingdom', nt_location_typ (
 location_typ(2400, '8204 Arthur St', '', 'London', 'London'),
 location_typ(2500, 'Magdalen Centre, The Oxford Science Park', 'OX9 9ZB',
 'Oxford', 'Oxford'),
 location_typ(2600, '9702 Chester Road', '09629850293', 'Stretford',
 'Manchester'))
)
)
);

Operations on Collection Data Types
This section describes the operations on collection data types.

This section contains the following topics:

■ Querying Collections

■ Performing DML Operations on Collections

■ Using BULK COLLECT to Return Entire Result Sets

■ Conditions that Compare Nested Tables

■ Multiset Operations for Nested Tables

Querying Collections
There are two general ways to query a table that contains a collection type as a column
or attribute.

■ Nest the collections in the result rows that contain them.

■ Distribute or unnest collections so that each collection element appears on a row
by itself.

Nesting Results of Collection Queries
The following queries use the department_persons table shown in Example 5–3 on
page 5-3. The column dept_emps is a nested table collection of person_typ type.
The dept_emps collection column appears in the SELECT list like an ordinary scalar
column. Querying a collection column in the SELECT list this way nests the elements
of the collection in the result row that the collection is associated with.

Example 5–16 shows the query retrieving the nested collection of employees.

Example 5–16 Nesting Results of Collection Queries

-- Requires Ex. 5-1 and Ex. 5-3
SELECT d.dept_emps
 FROM department_persons d;

DEPT_EMPS(IDNO, NAME, PHONE)

PEOPLE_TYP(PERSON_TYP(1, 'John Smith', '1-650-555-0135'),
PERSON_TYP(2, 'Diane Smith', '1-650-555-0135'))

The results are also nested if an object type column in the SELECT list contains a
collection attribute, even if that collection is not explicitly listed in the SELECT list
itself. For example, the query SELECT * FROM department_persons produces a
nested result.

Operations on Collection Data Types

Support for Collection Data Types 5-13

Unnesting Results of Collection Queries
Not all tools or applications can deal with results in a nested format. To view Oracle
collection data using tools that require a conventional format, you must unnest, or
flatten, the collection attribute of a row into one or more relational rows. You can do
this using a TABLE expression with the collection. TABLE expressions enable you to
query a collection in the FROM clause like a table. In effect, you join the nested table
with the row that contains the nested table.

TABLE expressions can be used to query any collection value expression, including
transient values such as variables and parameters.

The query in Example 5–17, like that of Example 5–16, retrieves the collection of
employees, but here the collection is unnested.

Example 5–17 Unnesting Results of Collection Queries

-- Requires Ex. 5-1 and 5-3
SELECT e.*
 FROM department_persons d, TABLE(d.dept_emps) e;

 IDNO NAME PHONE
---------- ------------------------------ ---------------
 1 John Smith 1-650-555-0135
 2 Diane Smith 1-650-555-0135

Example 5–17 shows that a TABLE expression can have its own table alias. A table alias
for the TABLE expression appears in the SELECT list to select columns returned by the
TABLE expression.

The TABLE expression uses another table alias to specify the table that contains the
collection column that the TABLE expression references. The expression
TABLE(d.dept_emps) specifies the department_persons table as containing the
dept_emps collection column. To reference a table column, a TABLE expression can
use the table alias of any table appearing to the left of it in a FROM clause. This is called
left correlation.

In the example, the department_persons table is listed in the FROM clause solely to
provide a table alias for the TABLE expression to use. No columns from the
department_persons table other than the column referenced by the TABLE
expression appear in the result.

The following example produces rows only for departments that have employees.

SELECT d.dept_no, e.*
 FROM department_persons d, TABLE(d.dept_emps) e;

To get rows for departments with or without employees, you can use outer-join syntax:

SELECT d.dept_no, e.*
 FROM department_persons d, TABLE(d.dept_emps) (+) e;

The (+) indicates that the dependent join between department_persons and
e.dept_emps should be NULL-augmented. That is, there will be rows of
department_persons in the output for which e.dept_emps is NULL or empty,
with NULL values for columns corresponding to e.dept_emps.

See Also: Oracle Database SQL Language Reference for further
information on the TABLE expression and unnesting collections

Operations on Collection Data Types

5-14 Oracle Database Object-Relational Developer's Guide

Unnesting Queries Containing Table Expression Subqueries
The examples in "Unnesting Results of Collection Queries" on page 5-13 show a TABLE
expression that contains the name of a collection. Alternatively, a TABLE expression
can contain a subquery of a collection.

Example 5–18 returns the collection of employees whose department number is 101.

Example 5–18 Using a Table Expression Containing a Subquery of a Collection

-- Requires Ex. 5-1 and 5-3
SELECT *
 FROM TABLE(SELECT d.dept_emps
 FROM department_persons d
 WHERE d.dept_no = 101);

Subqueries in a TABLE expression have these restrictions:

■ The subquery must return a collection type.

■ The SELECT list of the subquery must contain exactly one item.

■ The subquery must return only a single collection; it cannot return collections for
multiple rows. For example, the subquery SELECT dept_emps FROM
department_persons succeeds in a TABLE expression only if table
department_persons contains just a single row. If the table contains more than
one row, the subquery produces an error.

Example 5–19 shows a TABLE expression used in the FROM clause of a SELECT
embedded in a CURSOR expression.

Example 5–19 Using a Table Expression in a CURSOR Expression

-- Requires Ex. 5-1 and 5-3
SELECT d.dept_no, CURSOR(SELECT * FROM TABLE(d.dept_emps))
 FROM department_persons d
 WHERE d.dept_no = 101;

Unnesting Queries with Multilevel Collections
Unnesting queries can be also used with multilevel collections, both varrays and
nested tables. Example 5–20 shows an unnesting query on a multilevel nested table
collection of nested tables. From the table region_tab where each region has a
nested table of countries and each country has a nested table of locations, the
query returns the names of all regions, countries, and locations.

Example 5–20 Unnesting Queries with Multilevel Collections Using the TABLE Function

-- Requires Ex. 5-10 and 5-15
SELECT r.region_name, c.country_name, l.location_id
 FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) l;

-- the following query is optimized to run against the locations table
SELECT l.location_id, l.city
 FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) l;

The output should be as follows:

REGION_NAME COUNTRY_NAME LOCATION_ID
------------------------- -- -----------
Europe Italy 1000
Europe Italy 1100
Europe Switzerland 2900

Operations on Collection Data Types

Support for Collection Data Types 5-15

Europe Switzerland 3000
Europe United Kingdom 2400
Europe United Kingdom 2500
Europe United Kingdom 2600

7 rows selected.

LOCATION_ID CITY
----------- ------------------------------
 1000 Roma
 1100 Venice
 2900 Geneva
 3000 Bern
 2400 London
 2500 Oxford
 2600 Stretford

7 rows selected.

Because no columns of the base table region_tab appear in the second SELECT list,
the query is optimized to run directly against the locations storage table.

Outer-join syntax can also be used with queries of multilevel collections. See "Viewing
Object Data in Relational Form with Unnesting Queries" on page 9-8.

Performing DML Operations on Collections
Oracle supports the following DML operations on collections:

■ Inserts and updates that provide a new value for the entire collection

■ Individual or piecewise updates of nested tables and multilevel nested tables,
including inserting, deleting, and updating elements

Oracle does not support piecewise updates on VARRAY columns. However, VARRAY
columns can be inserted into or updated as an atomic unit.

This section contains these topics:

■ Piecewise Operations on Nested Tables

■ Piecewise Operations on Multilevel Nested Tables

■ Atomical Changes on VARRAYs and Nested Tables

■ Collections as Atomic Data Items

Piecewise Operations on Nested Tables
For piecewise operations on nested table columns, use the TABLE expression.

The TABLE expression uses a subquery to extract the nested table, so that the INSERT,
UPDATE, or DELETE statement applies to the nested table rather than the top-level
table.

CAST operators are also helpful. With them, you can do set operations on nested tables
using SQL notation, without actually storing the nested tables in the database.

See Also:

■ Oracle Database SQL Language Reference

■ "CAST" on page 2-32

Operations on Collection Data Types

5-16 Oracle Database Object-Relational Developer's Guide

The DML statements in Example 5–21 demonstrate piecewise operations on nested
table columns.

Example 5–21 Piecewise Operations on Collections

-- Requires Ex. 5-1 and 5-3
INSERT INTO TABLE(SELECT d.dept_emps
 FROM department_persons d
 WHERE d.dept_no = 101)
 VALUES (5, 'Kevin Taylor', '1-408-555-0199');

UPDATE TABLE(SELECT d.dept_emps
 FROM department_persons d
 WHERE d.dept_no = 101) e
 SET VALUE(e) = person_typ(5, 'Kevin Taylor', '1-408-555-0199')
 WHERE e.idno = 5;

DELETE FROM TABLE(SELECT d.dept_emps
 FROM department_persons d
 WHERE d.dept_no = 101) e
 WHERE e.idno = 5;

Example 5–22 shows VALUE used to return object instance rows for updating:

Example 5–22 Using VALUE to Update a Nested Table

-- Requires Ex. 5-1, 5-3
UPDATE TABLE(SELECT d.dept_emps FROM department_persons d
 WHERE d.dept_no = 101) p
 SET VALUE(p) = person_typ(2, 'Diane Smith', '1-650-555-0148')
 WHERE p.idno = 2;

Piecewise Operations on Multilevel Nested Tables
Piecewise DML is possible only on multilevel nested tables, not on multilevel varrays.
You can perform DML operation atomically on both VARRAYs and nested tables
multilevel collections as described in "Collections as Atomic Data Items" on page 5-17.

Example 5–23 shows a piecewise insert operation on the countries nested table of
nested tables. The example inserts a new country, complete with its own nested table
of location_typ:

Example 5–23 Piecewise INSERT on a Multilevel Collection

-- Requires Ex. 5-10 and 5-15
INSERT INTO TABLE(SELECT countries FROM region_tab r WHERE r.region_id = 2)
 VALUES ('CA', 'Canada', nt_location_typ(
 location_typ(1800, '147 Spadina Ave', 'M5V 2L7', 'Toronto', 'Ontario')));

Example 5–24 performs a piecewise insert into an inner nested table to add a location
for a country. Like the preceding example, this example uses a TABLE expression
containing a subquery that selects the inner nested table to specify the target for the
insert.

Example 5–24 Piecewise INSERT into an Inner Nested Table

-- Requires Ex. 5-10 and 5-15
INSERT INTO TABLE(SELECT c.locations
 FROM TABLE(SELECT r.countries FROM region_tab r WHERE r.region_id = 2) c
 WHERE c.country_id = 'US')

Operations on Collection Data Types

Support for Collection Data Types 5-17

 VALUES (1700, '2004 Lakeview Rd', '98199', 'Seattle', 'Washington');

SELECT r.region_name, c.country_name, l.location_id
 FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) l;

Atomical Changes on VARRAYs and Nested Tables
This section discusses atomical changes to nested tables and VARRAYs.

Note: While nested tables can also be changed in a piecewise fashions, varrays cannot.

Example 5–25 shows how you can manipulate SQL varray object types with PL/SQL
statements. In this example, varrays are transferred between PL/SQL variables and
SQL tables. You can insert table rows containing collections, update a row to replace its
collection, and select collections into PL/SQL variables.

However, you cannot update or delete individual varray elements directly with SQL;
you have to select the varray from the table, change it in PL/SQL, then update the
table to include the new varray. You can also do this with nested tables, but nested
tables have the option of doing piecewise updates and deletes.

Example 5–25 Using INSERT, UPDATE, DELETE, and SELECT Statements With Varrays

CREATE TYPE dnames_var IS VARRAY(7) OF VARCHAR2(30);
/
CREATE TABLE depts (region VARCHAR2(25), dept_names dnames_var);
BEGIN
 INSERT INTO depts VALUES('Europe', dnames_var('Shipping','Sales','Finance'));
 INSERT INTO depts VALUES('Americas', dnames_var('Sales','Finance','Shipping'));
 INSERT INTO depts
 VALUES('Asia', dnames_var('Finance','Payroll','Shipping','Sales'));
 COMMIT;
END;
/
DECLARE
 new_dnames dnames_var := dnames_var('Benefits', 'Advertising', 'Contracting',
 'Executive', 'Marketing');
 some_dnames dnames_var;
BEGIN
 UPDATE depts SET dept_names = new_dnames WHERE region = 'Europe';
 COMMIT;
 SELECT dept_names INTO some_dnames FROM depts WHERE region = 'Europe';
 FOR i IN some_dnames.FIRST .. some_dnames.LAST
 LOOP
 DBMS_OUTPUT.PUT_LINE('dept_names = ' || some_dnames(i));
 END LOOP;
END;
/

Collections as Atomic Data Items
The section "Constructors for Multilevel Collections" on page 5-11 shows how to insert
an entire multilevel collection with an INSERT statement. Multilevel collections (both
VARRAY and nested tables) can also be updated atomically with an UPDATE statement.
For example, suppose v_country is a variable declared to be of the countries
nested table type nt_country_typ.

Example 5–26 updates region_tab by setting the countries collection as a unit to
the value of v_country.

Operations on Collection Data Types

5-18 Oracle Database Object-Relational Developer's Guide

Example 5–26 Using UPDATE to Insert an Entire Multilevel Collection

-- Requires Ex. 5-10 and 5-15
INSERT INTO region_tab (region_id, region_name) VALUES(2, 'Americas');

DECLARE
 v_country nt_country_typ;
BEGIN
 v_country := nt_country_typ(country_typ(
 'US', 'United States of America', nt_location_typ (
 location_typ(1500,'2011 Interiors Blvd','99236','San Francisco','California'),
 location_typ(1600,'2007 Zagora St','50090','South Brunswick','New Jersey'))));
 UPDATE region_tab r
 SET r.countries = v_country WHERE r.region_id = 2;
END;
/
-- Invocation:
SELECT r.region_name, c.country_name, l.location_id
 FROM region_tab r, TABLE(r.countries) c, TABLE(c.locations) l
 WHERE r.region_id = 2;

Using BULK COLLECT to Return Entire Result Sets
The PL/SQL BULK COLLECT clause is an alternative to using DML statements, which
can be time consuming to process. You can return an entire result set in one operation.

In Example 5–27, BULK COLLECT is used with a multilevel collection that includes an
object type.

Example 5–27 Using BULK COLLECT with Collections

-- unrelated to other examples in this chapter
CREATE TYPE dnames_var IS VARRAY(7) OF VARCHAR2(30);
/
CREATE TABLE depts (region VARCHAR2(25), dept_names dnames_var);
BEGIN
 INSERT INTO depts VALUES('Europe', dnames_var('Shipping','Sales','Finance'));
 INSERT INTO depts VALUES('Americas', dnames_var('Sales','Finance','Shipping'));
 INSERT INTO depts
 VALUES('Asia', dnames_var('Finance','Payroll','Shipping','Sales'));
 COMMIT;
END;
/
DECLARE
 TYPE dnames_tab IS TABLE OF dnames_var;
 v_depts dnames_tab;
BEGIN
 SELECT dept_names BULK COLLECT INTO v_depts FROM depts;
 DBMS_OUTPUT.PUT_LINE(v_depts.COUNT); -- prints 3
END;
/

Conditions that Compare Nested Tables
The conditions listed in this section allow comparisons of nested tables, including
multilevel nested tables. There is no mechanism for comparing varrays. The SQL
examples in this section use the nested tables created in Example 5–5 on page 5-5, and
contain the objects created in Example 5–1 on page 5-2.

Operations on Collection Data Types

Support for Collection Data Types 5-19

Equal and Not Equal Comparisons
The equal (=) and not equal (<>) conditions determine whether the input nested tables
are identical or not, returning the result as a Boolean value.

Two nested tables are equal if they have the same named type, have the same
cardinality, and their elements are equal. Elements are equal depending on whether
they are equal by the elements own equality definitions, except for object types which
require a map method. Equality is determined in the existing order of the elements,
because nested tables are unordered.

Example 5–28 Using an Equality Comparison with Nested Tables

-- Requires Ex. 5-1 and 5-5
SELECT p.name
 FROM students, TABLE(physics_majors) p
WHERE math_majors = physics_majors;

In Example 5–28, the nested tables contain person_typ objects, which have an
associated map method. See Example 5–1 on page 5-2. Since the two nested tables in
the WHERE clause are not equal, no rows are selected.

IN Comparison
The IN condition checks whether or not a nested table is in a list of nested tables,
returning the result as a Boolean value. NULL is returned if the nested table is a null
nested table.

Example 5–29 Using an IN Comparison with Nested Tables

-- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors IN (math_majors, chem_majors);

Subset of Multiset Comparison
The SUBMULTISET [OF] condition checks whether or not a nested table is a subset of
another nested table, returning the result as a Boolean value. The OF keyword is
optional and does not change the functionality of SUBMULTISET.

This condition is implemented only for nested tables.

Example 5–30 Testing the SUBMULTISET OF Condition on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors SUBMULTISET OF math_majors;

Member of a Nested Table Comparison
The MEMBER [OF] or NOT MEMBER [OF] condition tests whether or not an element is a
member of a nested table, returning the result as a Boolean value. The OF keyword is
optional and has no effect on the output.

In Example 5–31, the person_typ is an element of the same type as the elements of
the nested table math_majors.

See Also: "Multiset Operations for Nested Tables" on page 5-20

Operations on Collection Data Types

5-20 Oracle Database Object-Relational Developer's Guide

Example 5–31 Using MEMBER OF on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT graduation
 FROM students
WHERE person_typ(12, 'Bob Jones', '1-650-555-0130') MEMBER OF math_majors;

Example 5–32 presents an alternative approach to the MEMBER OF condition, which
performs more efficiently for large collections.

Example 5–32 Alternative to Using MEMBER OF on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT graduation
 FROM students
WHERE person_typ(12, 'Bob Jones', '1-650-555-0130') in (select value(p)
 from TABLE(math_majors) p);

Empty Comparison
The IS [NOT] EMPTY condition checks whether a given nested table is empty or not
empty, regardless of whether any of the elements are NULL. If a NULL is given for the
nested table, the result is NULL. The result is returned as a Boolean value.

Example 5–33 Using IS NOT on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors IS NOT EMPTY;

Set Comparison
The IS [NOT] A SET condition checks whether or not a given nested table is
composed of unique elements, returning a Boolean value.

Example 5–34 Using IS A SET on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors IS A SET;

Multiset Operations for Nested Tables
This section describes multiset operators for nested tables. Multiset operations are not
available for varrays.

The SQL examples in this section use the nested tables created in Example 5–5 on
page 5-5 and the objects created in Example 5–1 on page 5-2.

See Also:

■ "Functions and Operators Useful with Objects" on page 2-32 for a
description of additional operations

■ Oracle Database SQL Language Reference.for more information about
using operators with nested tables

Operations on Collection Data Types

Support for Collection Data Types 5-21

CARDINALITY
The CARDINALITY function returns the number of elements in a nested table. The
return type is NUMBER. If the nested table is a null collection, NULL is returned.

Example 5–35 Determining the CARDINALITY of a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT CARDINALITY(math_majors)
 FROM students;

For more information about the CARDINALITY function, see Oracle Database SQL
Language Reference.

COLLECT
The COLLECT function is an aggregate function which creates a multiset from a set of
elements. The function takes a column of the element type as input and creates a
multiset from rows selected. To get the results of this function, you must use it within a
CAST function to specify the output type of COLLECT. See "CAST" on page 2-32 for an
example of the COLLECT function.

For more information about the COLLECT function, see Oracle Database SQL Language
Reference.

MULTISET EXCEPT
The MULTISET EXCEPT operator inputs two nested tables and returns a nested table
whose elements are in the first nested table but not the second. The input nested tables
and the output nested table will all be of the same nested table type.

The ALL or DISTINCT options can be used with the operator. The default is ALL.

■ With the ALL option, for ntab1 MULTISET EXCEPT ALL ntab2, all elements in
ntab1 other than those in ntab2 are part of the result. If a particular element
occurs m times in ntab1 and n times in ntab2, the result shows (m - n)
occurrences of the element if m is greater than n, otherwise, 0 occurrences of the
element.

■ With the DISTINCT option, any element that is present in ntab1 and is also
present in ntab2 is eliminated, irrespective of the number of occurrences.

Example 5–36 Using the MULTISET EXCEPT Operation on Nested Tables

-- Requires Ex. 5-1 and 5-5
SELECT math_majors MULTISET EXCEPT physics_majors
 FROM students
WHERE graduation = '01-JUN-03';

For more information about the MULTISET EXCEPT operator, see Oracle Database SQL
Language Reference.

MULTISET INTERSECT
The MULTISET INTERSECT operator returns a nested table whose values are common
to the two input nested tables. The input nested tables and the output nested table are
all type name equivalent.

There are two options associated with the operator: ALL or DISTINCT. The default is
ALL. With the ALL option, if a particular value occurs m times in ntab1 and n times in
ntab2, the result contains the element MIN(m, n) times. With the DISTINCT option, the

Operations on Collection Data Types

5-22 Oracle Database Object-Relational Developer's Guide

duplicates from the result are eliminated, including duplicates of NULL values if they
exist.

Example 5–37 Using the MULTISET INTERSECT Operation on Nested Tables

-- Requires Ex. 5-1 and 5-5
SELECT math_majors MULTISET INTERSECT physics_majors
 FROM students
WHERE graduation = '01-JUN-03';

For more information about the MULTISET INTERSECT operator, see Oracle Database
SQL Language Reference.

MULTISET UNION
The MULTISET UNION operator returns a nested table whose values are those of the
two input nested tables. The input nested tables and the output nested table are all
type name equivalent.

There are two options associated with the operator: ALL or DISTINCT. The default is
ALL. With the ALL option, all elements in ntab1 and ntab2 are part of the result,
including all copies of NULLs. If a particular element occurs m times in ntab1 and n
times in ntab2, the result contains the element (m + n) times. With the DISTINCT
option, the duplicates from the result are eliminated, including duplicates of NULL
values if they exist.

Example 5–38 Using the MULTISET UNION Operation on Nested Tables

-- Requires Ex. 5-1 and 5-5
SELECT math_majors MULTISET UNION DISTINCT physics_majors
 FROM students
WHERE graduation = '01-JUN-03';

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-650-555-0130'),
PERSON_TYP(31, 'Sarah Chen', '1-415-555-0120'),
PERSON_TYP(45, 'Chris Woods', '1-408-555-0128'))

-- Requires Ex. 5-1 and 5-5
SELECT math_majors MULTISET UNION ALL physics_majors
 FROM students
WHERE graduation = '01-JUN-03';

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-650-555-0130'),
PERSON_TYP(31, 'Sarah Chen', '1-415-555-0120'),
PERSON_TYP(45, 'Chris Woods', '1-408-555-0128'),
PERSON_TYP(12, 'Bob Jones', '1-650-555-0130'),
PERSON_TYP(45, 'Chris Woods', '1-408-555-0128'))

For more information about the MULTISET UNION operator, see Oracle Database SQL
Language Reference.

POWERMULTISET
The POWERMULTISET function generates all non-empty submultisets from a given
multiset. The input to the POWERMULTISET function can be any expression which
evaluates to a multiset. The limit on the cardinality of the multiset argument is 32.

Partitioning Tables That Contain Oracle Objects

Support for Collection Data Types 5-23

Example 5–39 Using the POWERMULTISET Operation on Multiset

-- Requires Ex. 5-1 and 5-5
SELECT * FROM TABLE(POWERMULTISET(people_typ (
 person_typ(12, 'Bob Jones', '1-650-555-0130'),
 person_typ(31, 'Sarah Chen', '1-415-555-0120'),
 person_typ(45, 'Chris Woods', '1-415-555-0124'))));

For more information about the POWERMULTISET function, see Oracle Database SQL
Language Reference.

POWERMULTISET_BY_CARDINALITY
The POWERMULTISET_BY_CARDINALITY function returns all non-empty
submultisets of a nested table of the specified cardinality. The output is rows of nested
tables.

POWERMULTISET_BY_CARDINALITY(x, l) is equivalent to
TABLE(POWERMULTISET(x)) p where CARDINALITY(value(p)) = l, where x is a
multiset and l is the specified cardinality.

The first input parameter to the POWERMULTISET_BY_CARDINALITY can be any
expression which evaluates to a nested table. The length parameter must be a positive
integer, otherwise an error is returned. The limit on the cardinality of the nested table
argument is 32.

Example 5–40 Using the POWERMULTISET_BY_CARDINALITY Function

-- Requires Ex. 5-1 and 5-5
SELECT * FROM TABLE(POWERMULTISET_BY_CARDINALITY(people_typ (
 person_typ(12, 'Bob Jones', '1-650-555-0130'),
 person_typ(31, 'Sarah Chen', '1-415-555-0120'),
 person_typ(45, 'Chris Woods', '1-415-555-0124')),2));

For more information about the POWERMULTISET_BY_CARDINALITY function, see
Oracle Database SQL Language Reference.

SET
The SET function converts a nested table into a set by eliminating duplicates, and
returns a nested table whose elements are distinct from one another. The nested table
returned is of the same named type as the input nested table.

Example 5–41 Using the SET Function on a Nested Table

-- Requires Ex. 5-1 and 5-5
SELECT SET(physics_majors)
 FROM students
WHERE graduation = '01-JUN-03';

For more information about the SET function, see Oracle Database SQL Language
Reference.

Partitioning Tables That Contain Oracle Objects
Partitioning addresses the key problem of supporting very large tables and indexes by
allowing you to decompose them into smaller and more manageable pieces called
partitions. Oracle extends partitioning capabilities by letting you partition tables that
contain objects, REFs, varrays, and nested tables. Varrays stored in LOBs are

Partitioning Tables That Contain Oracle Objects

5-24 Oracle Database Object-Relational Developer's Guide

equipartitioned in a way similar to LOBs. See also Oracle Database SecureFiles and Large
Objects Developer's Guide.

With Oracle Database 11g release 1 (11.1), nested tables are equipartitioned, meaning
that the partitioning of storage tables associated with nested tables corresponds to that
of the top level base tables. The keyword LOCAL is the default and indicates this
behavior. Previous releases stored unpartitioned nested tables with partitioned base
tables. To obtain this behavior, specify the GLOBAL keyword. To partition your existing
non-partitioned nested tables, see the discussion of online redefinition in Oracle
Database VLDB and Partitioning Guide.

Generally, maintenance operations are carried out on the top level (or parent table) and
cascade to the associated nested tables. However, you must perform the following
operations directly on the nested table partition:

■ Modifying default attributes, that is, changing default physical attributes of a
partition.

■ Modifying a partition, that is, changing the physical attributes of a table partition.

■ Moving a partition, that is, moving contents of a table partition into another
segment or another tablespace.

■ Renaming a partition, that is, assigning a new name to a table partition.

Example 5–42 partitions the purchase order table along zip codes (ToZip), which is an
attribute of the ShipToAddr embedded column object. The LineItemList_nt
nested table illustrates storage for the partitioned nested table.

Example 5–42 Partitioning a Nested Table That Contains Objects

CREATE TYPE StockItem_objtyp AS OBJECT (
 StockNo NUMBER,
 Price NUMBER,
 TaxRate NUMBER);
/

CREATE TYPE LineItem_objtyp AS OBJECT (
 LineItemNo NUMBER,
 Stock_ref REF StockItem_objtyp,
 Quantity NUMBER,
 Discount NUMBER);
/

CREATE TYPE Address_objtyp AS OBJECT (
 Street VARCHAR2(200),
 City VARCHAR2(200),
 State CHAR(2),
 Zip VARCHAR2(20))
/

CREATE TYPE LineItemList_nt as table of LineItem_objtyp;
/

CREATE TYPE PurchaseOrder_ntyp AS OBJECT (

See Also: For further information on equipartitioning

■ Oracle Database VLDB and Partitioning Guide

■ Oracle XML DB Developer's Guide

Partitioning Tables That Contain Oracle Objects

Support for Collection Data Types 5-25

 PONo NUMBER,
 OrderDate DATE,
 ShipDate DATE,
 OrderForm BLOB,
 LineItemList LineItemList_nt,
 ShipToAddr Address_objtyp,

 MAP MEMBER FUNCTION
 ret_value RETURN NUMBER,
 MEMBER FUNCTION
 total_value RETURN NUMBER);
/

CREATE TABLE PurchaseOrders_ntab of PurchaseOrder_ntyp
LOB (OrderForm) store as (nocache logging)
NESTED TABLE LineItemList STORE AS LineItemList_ntab
PARTITION BY RANGE (ShipToAddr.zip)
 (PARTITION PurOrderZone1_part VALUES LESS THAN ('59999')
 LOB (OrderForm) store as (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 NESTED TABLE LineItemList store as LineitemZone1_part(
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100)),
 PARTITION PurOrderZone2_part VALUES LESS THAN ('79999')
 LOB (OrderForm) store as (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 NESTED TABLE LineItemList store as LineitemZone2_part(
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100)),
 PARTITION PurOrderZone3_part VALUES LESS THAN ('99999')
 LOB (OrderForm) store as (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 NESTED TABLE LineItemList store as LineitemZone3_part(
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100)))
/

Partitioning Tables That Contain Oracle Objects

5-26 Oracle Database Object-Relational Developer's Guide

6

Applying an Object Model to Relational Data 6-1

6 Applying an Object Model to Relational Data

This chapter shows how to write object-oriented applications without changing the
underlying structure of your relational data.

The chapter contains these topics:

■ Why Use Object Views

■ Defining Object Views

■ Using Object Views in Applications

■ Nesting Objects in Object Views

■ Identifying Null Objects in Object Views

■ Using Nested Tables and Varrays in Object Views

■ Specifying Object Identifiers for Object Views

■ Creating References to View Objects

■ Modelling Inverse Relationships with Object Views

■ Updating Object Views

■ Applying the Object Model to Remote Tables

■ Defining Complex Relationships in Object Views

■ Object View Hierarchies

Why Use Object Views
Just as a view is a virtual table, an object view is a virtual object table. Each row in the
view is an object: you can call its methods, access its attributes using the dot notation,
and create a REF that points to it.

You can run object-oriented applications without converting existing tables to a
different physical structure. To do this, you can use object views to prototype or
transition to object-oriented applications because the data in the view can be taken
from relational tables and accessed as if the table were defined as an object table.

Object views can be used like relational views to present only the data that you want
users to see. For example, you might create an object view that presents selected data
from an employee table but omits sensitive data about salaries.

Using object views can lead to better performance. Relational data that makes up a
row of an object view traverses the network as a unit, potentially saving many round
trips.

Defining Object Views

6-2 Oracle Database Object-Relational Developer's Guide

You can fetch relational data into the client-side object cache and map it into C
structures or C++ or Java classes, so 3GL applications can manipulate it just like native
classes. You can also use object-oriented features like complex object retrieval with
relational data.

■ You can query the data in new ways by synthesizing objects from relational data.
You can view data from multiple tables by using object dereferencing instead of
writing complex joins with multiple tables.

■ You can pin the object data from object views and use the data in the client side
object cache. When you retrieve these synthesized objects in the object cache by
means of specialized object-retrieval mechanisms, you reduce network traffic.

■ You gain great flexibility when you create an object model within a view, enabling
you to continue developing the model. If you need to alter an object type, you can
simply replace the invalidated views with a new definition.

■ You do not place any restrictions on the characteristics of the underlying storage
mechanisms by using objects in views. By the same token, you are not limited by
the restrictions of current technology. For example, you can synthesize objects
from relational tables which are parallelized and partitioned.

■ You can create different complex data models from the same underlying data.

Defining Object Views
The procedure for defining an object view is:

1. Define an object type, where each attribute of the type corresponds to an existing
column in a relational table.

2. Write a query that specifies how to extract the data from the relational table.
Specify the columns in the same order as the attributes in the object type.

3. Specify a unique value, based on attributes of the underlying data, to serve as an
object identifier, enabling you to create pointers (REFs) to the objects in the view.
You can often use an existing primary key.

To update an object view where the attributes of the object type do not correspond
exactly to columns in existing tables, you may need to do the following:

Write an INSTEAD OF trigger procedure for Oracle to execute whenever an application
program tries to update data in the object view. See "Updating Object Views" on
page 6-10.

See Also:

■ Oracle Database SQL Language Reference for a complete
description of SQL syntax and usage.

■ Oracle Database PL/SQL Language Reference for a complete
discussion of PL/SQL capabilities

■ Oracle Database Java Developer's Guide for a complete discussion
of Java.

■ Oracle Call Interface Programmer's Guide for a complete
discussion of those facilities.

See Also: "Using Object Identifiers to Identify Row Objects" on
page 1-7

Using Object Views in Applications

Applying an Object Model to Relational Data 6-3

After these steps, you can use an object view just like an object table.

Example 6–1 contains SQL statements to define an object view, where each row in the
view is an object of type employee_t:

Example 6–1 Creating an Object View

CREATE TABLE emp_table (
 empnum NUMBER (5),
 ename VARCHAR2 (20),
 salary NUMBER (9,2),
 job VARCHAR2 (20));

CREATE TYPE employee_t AS OBJECT (
 empno NUMBER (5),
 ename VARCHAR2 (20),
 salary NUMBER (9,2),
 job VARCHAR2 (20));
/

CREATE VIEW emp_view1 OF employee_t
 WITH OBJECT IDENTIFIER (empno) AS
 SELECT e.empnum, e.ename, e.salary, e.job
 FROM emp_table e
 WHERE job = 'Developer';

insert into emp_table values(1,'John',1000.00,'Architect');
insert into emp_table values(2,'Robert',900.00,'Developer');
insert into emp_table values(3,'James',2000.00,'Director');

select * from emp_view1;

 EMPNO ENAME SALARY JOB
---------- -------------------- ---------- --------------------
 2 Robert 900 Developer

To access the data from the empnum column of the relational table, access the empno
attribute of the object type.

Using Object Views in Applications
Data in the rows of an object view may come from more than one table, but the object
view still traverses the network in one operation. The instance appears in the client
side object cache as a C or C++ structure or as a PL/SQL object variable. You can
manipulate it like any other native structure.

You can refer to object views in SQL statements in the same way you refer to an object
table. For example, object views can appear in a SELECT list, in an UPDATE-SET
clause, or in a WHERE clause.

You can also define object views on object views.

You can access object view data on the client side using the same OCI calls you use for
objects from object tables. For example, you can use OCIObjectPin() for pinning a
REF and OCIObjectFlush() for flushing an object to the server. When you update
or flush an object to the database in an object view, the database updates the object
view.

Nesting Objects in Object Views

6-4 Oracle Database Object-Relational Developer's Guide

Nesting Objects in Object Views
An object type can have other object types nested in it as attributes.

If the object type on which an object view is based has an attribute that itself is an
object type, then you must provide column objects for this attribute as part of the
process of creating the object view. If column objects of the attribute type already exist
in a relational table, you can simply select them; otherwise, you must synthesize the
object instances from underlying relational data just as you synthesize the principal
object instances of the view. You synthesize, or create, these objects by calling the
respective constructor methods of the object type to create the object instances, and
you can populate their attributes with data from relational columns specified in the
constructor.

For example, consider the department table dept in Example 6–2. You might want to
create an object view where the addresses are objects inside the department objects.
That would allow you to define reusable methods for address objects, and use them
for all kinds of addresses.

First, create the types for the address and department objects, then create the view
containing the department number, name and address. The address objects are
constructed from columns of the relational table.

Example 6–2 Creating a View with Nested Object Types

CREATE TABLE dept (
 deptno NUMBER PRIMARY KEY,
 deptname VARCHAR2(20),
 deptstreet VARCHAR2(20),
 deptcity VARCHAR2(10),
 deptstate CHAR(2),
 deptzip VARCHAR2(10));

CREATE TYPE address_t AS OBJECT (
 street VARCHAR2(20),
 city VARCHAR2(10),
 state CHAR(2),
 zip VARCHAR2(10));
/
CREATE TYPE dept_t AS OBJECT (
 deptno NUMBER,
 deptname VARCHAR2(20),
 address address_t);
/

CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER (deptno) AS
 SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS
 deptaddr
 FROM dept d;

insert into dept values(1,'Sales','500 Oracle pkwy','Redwood S','CA','94065');
insert into dept values(2,'ST','400 Oracle Pkwy','Redwood S','CA','94065');
insert into dept values(3,'Apps','300 Oracle pkwy','Redwood S','CA','94065');

select * from dept_view;

See Also: See Oracle Call Interface Programmer's Guide for more
information about OCI calls.

Using Nested Tables and Varrays in Object Views

Applying an Object Model to Relational Data 6-5

 DEPTNO DEPTNAME
---------- --------------------
ADDRESS(STREET, CITY, STATE, ZIP)
--
 1 Sales
ADDRESS_T('500 Oracle pkwy', 'Redwood S', 'CA', '94065')

 2 ST
ADDRESS_T('400 Oracle Pkwy', 'Redwood S', 'CA', '94065')

 3 Apps
ADDRESS_T('300 Oracle pkwy', 'Redwood S', 'CA', '94065')

Identifying Null Objects in Object Views
Because the constructor for an object never returns a null, none of the address objects
in the preceding view can ever be null, even if the city, street, and so on columns in the
relational table are all null. The relational table has no column that specifies whether or
not the department address is null.

By using the DECODE function, or some other function, to return either a null or the
constructed object, the null deptstreet column can be used to indicate that the
whole address is null.

Example 6–3 Identifying Null Objects in an Object View

-- Requires Ex. 6-2
CREATE OR REPLACE VIEW dept_view AS
 SELECT d.deptno, d.deptname,
 DECODE(d.deptstreet, NULL, NULL,
 address_t(d.deptstreet, d.deptcity, d.deptstate, d.deptzip)) AS deptaddr
 FROM dept d;

This technique makes it impossible to directly update the department address through
the view, because it does not correspond directly to a column in the relational table.
Instead, define an INSTEAD OF trigger over the view to handle updates to this column.

Using Nested Tables and Varrays in Object Views
Collections, both nested tables and VARRAYs, can be columns in views. You can select
these collections from underlying collection columns or you can synthesize them using
subqueries. The CAST-MULTISET operator provides a way of synthesizing such
collections.

This section contains the following topics:

■ Single-Level Collections in Object Views

■ Multilevel Collections in Object Views

Single-Level Collections in Object Views
Using Example 6–1 and Example 6–2 as starting points, each employee in an emp
relational table has the structure in Example 6–4. Using this relational table, you can
construct a dept_view with the department number, name, address and a collection
of employees belonging to the department.

Using Nested Tables and Varrays in Object Views

6-6 Oracle Database Object-Relational Developer's Guide

First, define a nested table type for the employee type employee_t. Next, define a
department type with a department number, name, address, and a nested table of
employees. Finally, define the object view dept_view.

Example 6–4 Creating a View with a Single-Level Collection

-- Requires Ex. 6-1 and Ex. 6-2
CREATE TABLE emp (
 empno NUMBER PRIMARY KEY,
 empname VARCHAR2(20),
 salary NUMBER,
 job VARCHAR2 (20),
 deptno NUMBER REFERENCES dept(deptno));

CREATE TYPE employee_list_t AS TABLE OF employee_t; -- nested table
/
CREATE TYPE dept_t AS OBJECT (
 deptno NUMBER,
 deptname VARCHAR2(20),
 address address_t,
 emp_list employee_list_t);
/
CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER (deptno) AS
 SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS deptaddr,
 CAST(MULTISET (
 SELECT e.empno, e.empname, e.salary, e.job
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_t)
 AS emp_list
 FROM dept d;

insert into dept values(100,'ST','400 Oracle Pkwy','Redwood S','CA',94065);
insert into dept values(200,'Sales','500 Oracle Pkwy','Redwood S','CA',94065);
insert into emp values(1,'John',900,'Developer1',100);

insert into emp values(2,'Robert',1000,'Developer2',100);
insert into emp values(3,'Mary', 1000,'Apps1',200);
insert into emp values(4,'Maria',1500,'Developer3',200);
select * from dept_view where deptno = 100;

 DEPTNO DEPTNAME
---------- --------------------
ADDRESS(STREET, CITY, STATE, ZIP)
--
EMP_LIST(EMPNO, ENAME, SALARY, JOB)
--
 100 ST
ADDRESS_T('400 Oracle Pkwy', 'Redwood S', 'CA', '94065')
EMPLOYEE_LIST_T(EMPLOYEE_T(1, 'John', 900, 'Developer1'), EMPLOYEE_T(2, 'Robert'
, 1000, 'Developer2'))

select emp_list from dept_view where deptno = 100;

EMP_LIST(EMPNO, ENAME, SALARY, JOB)
--
EMPLOYEE_LIST_T(EMPLOYEE_T(1, 'John', 900, 'Developer1'), EMPLOYEE_T(2, 'Robert'
, 1000, 'Developer2'))

Using Nested Tables and Varrays in Object Views

Applying an Object Model to Relational Data 6-7

The SELECT subquery inside the CAST-MULTISET block selects the list of employees
that belong to the current department. The MULTISET keyword indicates that this is a
list as opposed to a singleton value. The CAST operator casts the result set into the
appropriate type, in this case to the employee_list_t nested table type.

A query on this view could provide the list of departments, with each department row
containing the department number, name, the address object and a collection of
employees belonging to the department.

Multilevel Collections in Object Views
Multilevel collections and single-level collections are created and used in object views
in the same way. The only difference is that, for a multilevel collection, you must create
an additional level of collections.

Example 6–5 builds an object view containing a multilevel collection. The view is
based on flat relational tables that contain no collections. As a preliminary to building
the object view, the example creates the object and collection types it uses. An object
type (for example, emp_t) is defined to correspond to each relational table, with
attributes whose types correspond to the types of the respective table columns. In
addition, the employee type has a nested table (attribute) of projects, and the
department type has a nested table (attribute) of employees. The latter nested table is a
multilevel collection. The CAST-MULTISET operator is used in the CREATE VIEW
statement to build the collections.

Example 6–5 Creating a View with Multilevel Collections

CREATE TABLE depts
 (deptno NUMBER,
 deptname VARCHAR2(20));

CREATE TABLE emps
 (ename VARCHAR2(20),
 salary NUMBER,
 deptname VARCHAR2(20));

CREATE TABLE projects
 (projname VARCHAR2(20),
 mgr VARCHAR2(20));

CREATE TYPE project_t AS OBJECT
 (projname VARCHAR2(20),
 mgr VARCHAR2(20));
/
CREATE TYPE nt_project_t AS TABLE OF project_t;
/
CREATE TYPE emp_t AS OBJECT
(ename VARCHAR2(20),
 salary NUMBER,
 deptname VARCHAR2(20),
 projects nt_project_t);
/
CREATE TYPE nt_emp_t AS TABLE OF emp_t;
/
CREATE TYPE depts_t AS OBJECT
 (deptno NUMBER,
 deptname VARCHAR2(20),
 emps nt_emp_t);

Specifying Object Identifiers for Object Views

6-8 Oracle Database Object-Relational Developer's Guide

/
CREATE VIEW v_depts OF depts_t WITH OBJECT IDENTIFIER (deptno) AS
 SELECT d.deptno, d.deptname,
 CAST(MULTISET(SELECT e.ename, e.salary, e.deptname,
 CAST(MULTISET(SELECT p.projname, p.mgr
 FROM projects p
 WHERE p.mgr = e.ename)
 AS nt_project_t)
 FROM emps e
 WHERE e.deptname = d.deptname)
 AS nt_emp_t)
 FROM depts d;

Specifying Object Identifiers for Object Views
You can construct pointers (REFs) to the row objects in an object view. Because the
view data is not stored persistently, you must specify a set of distinct values to be used
as object identifiers. Object identifiers allow you to reference the objects in object views
and pin them in the object cache.

If the view is based on an object table or an object view, then there is already an object
identifier associated with each row and you can reuse them. To do this, either omit the
WITH OBJECT IDENTIFIER clause or specify WITH OBJECT IDENTIFIER DEFAULT.

However, if the row object is synthesized from relational data, you must choose some
other set of values.

You can specify object identifiers based on the primary key. This turns the set of
unique keys that identify the row object into an identifier for the object. These values
must be unique within the rows selected out of the view, because duplicates would
lead to problems during navigation through object references.

■ Object views created with the WITH OBJECT IDENTIFIER Clause

An object view created with the WITH OBJECT IDENTIFIER clause has an object
identifier derived from the primary key.

For example, note the definition of the object type dept_t and the object view
dept_view described in "Single-Level Collections in Object Views" on page 6-5.

Because the underlying relational table has deptno as the primary key, each
department row has a unique department number. In the view, the deptno
column becomes the deptno attribute of the object type. Once you know that
deptno is unique within the view objects, you can specify it as the object
identifier.

■ Object views created with the WITH OBJECT IDENTIFIER DEFAULT Clause

If the WITH OBJECT IDENTIFIER DEFAULT clause is specified, the object
identifier is either system-generated or primary-key based, depending on the
underlying table or view definition.

See Also: "Using Object Identifiers to Identify Row Objects" on
page 1-7 for a description of primary-key based and system-generated
object identifiers

See Also: See "Storage Considerations for Object Identifiers (OIDs)"
on page 9-4.

Creating References to View Objects

Applying an Object Model to Relational Data 6-9

Creating References to View Objects
In this connected group of examples, Example 6–2 and Example 6–4, each object
selected out of the dept_view view has a unique object identifier derived from the
department number value. In the relational case, the foreign key deptno in the emp
employee table matches the deptno primary key value in the dept department table.
The primary key value creates the object identifier in the dept_view, allowing the
foreign key value in the emp_view to create a reference to the primary key value in
dept_view.

To synthesize a primary key object reference, use the MAKE_REF operator. This takes
the view or table name that the reference points to, and a list of foreign key values, to
create the object identifier portion of the reference that matches a specific object in the
referenced view.

Example 6–6 creates an emp_view view which has the employee's number, name,
salary and a reference to the employee’s department, by first creating the employee
type emp_t and then the view based on that type.

Example 6–6 Creating a Reference to Objects in a View

-- Requires Ex. 6-2 and Ex. 6-4
-- if you have previously created emp_t, you must drop it
CREATE TYPE emp_t AS OBJECT (
 empno NUMBER,
 ename VARCHAR2(20),
 salary NUMBER,
 deptref REF dept_t);
/
CREATE OR REPLACE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(empno)
 AS SELECT e.empno, e.empname, e.salary,
 MAKE_REF(dept_view, e.deptno)
 FROM emp e;

The deptref column in the view holds the department reference. The following
simple query retrieves all employees whose departments are located in the city of
Redwood S:

SELECT e.empno, e.salary, e.deptref.deptno
 FROM emp_view e
 WHERE e.deptref.address.city = 'Redwood S';

 EMPNO SALARY DEPTREF.DEPTNO
---------- ---------- --------------
 2 1000 100
 1 900 100
 4 1500 200
 3 1000 200

Note that you can also create emp_view using the REF modifier instead of MAKE_REF
as follows to get the reference to the dept_view objects:

Example 6–7 Query References to Objects with REF

-- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
CREATE OR REPLACE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(empno)
 AS SELECT e.empno, e.empname, e.salary, REF(d)
 FROM emp e, dept_view d
 WHERE e.deptno = d.deptno;

Modelling Inverse Relationships with Object Views

6-10 Oracle Database Object-Relational Developer's Guide

In Example 6–7, the dept_view joins the emp table on the deptno key.

The advantage of using the MAKE_REF operator, as in Example 6–6, instead of the REF
modifier is that with the former, you can create circular references. For example, you
can create an employee view that has a reference to the employee’s department, while
the department view has a list of references to the employees who work in that
department.

Note that if the object view has a primary-key based object identifier, the reference to
such a view is primary-key based. On the other hand, a reference to a view with
system-generated object identifier is a system-generated object reference. This
difference is only relevant when you create object instances in the OCI object cache and
need to get the reference to the newly created objects.

As with synthesized objects, you can also select persistently stored references as view
columns and use them seamlessly in queries. However, the object references to view
objects cannot be stored persistently.

Modelling Inverse Relationships with Object Views
You can use views with objects to model inverse relationships.

One-to-One Relationships
One-to-one relationships can be modeled with inverse object references. For example,
suppose that each employee has a particular desktop computer, and that the computer
belongs to that employee only. A relational model would capture this using foreign
keys either from the computer table to the employee table, or in the reverse direction.
Using views, you can model the objects so there is an object reference from the
employee to the computer object and also a reference from the computer object to the
employee.

One-to-Many and Many-to-One Relationships
One-to-many relationships (or many-to-many relationships) can be modeled either by
using object references or by embedding the objects. One-to-many relationship can be
modeled by having a collection of objects or object references. The many-to-one side of
the relationship can be modeled using object references.

Consider the department-employee case. In the underlying relational model, the
foreign key is in the employee table. The relationship between departments and
employees can be modeled using collections in views. The department view can have
a collection of employees, and the employee view can have a reference to the
department (or inline the department values). This gives both the forward relation
(from employee to department) and the inverse relation (department to list of
employees). The department view can also have a collection of references to employee
objects instead of embedding the employee objects.

Updating Object Views
You can update, insert, and delete data in an object view using the same SQL DML
you use for object tables. Oracle updates the base tables of the object view if there is no
ambiguity.

Views are not always directly updatable.

See Also: "Object Cache" on page 4-3

Updating Object Views

Applying an Object Model to Relational Data 6-11

A view is not directly updatable if the view query contains joins, set operators,
aggregate functions, or GROUP BY or DISTINCT clauses. Also, individual columns of
a view are not directly updatable if they are based on pseudocolumns or expressions
in the view query.

If a view is not directly updatable, you can still update it indirectly using INSTEAD OF
triggers. To do so, you define an INSTEAD OF trigger for each kind of DML statement
you want to execute on the view. In the INSTEAD OF trigger, code the operations that
must take place on the underlying tables of the view to accomplish the desired change
in the view. Then, when you issue a DML statement for which you have defined an
INSTEAD OF trigger, Oracle transparently runs the associated trigger.

For example, the following statement, which deletes all persons from Person_v, also
deletes all students from Student_v and all employees from the Employee_v view.

DELETE FROM Person_v;

To exclude subviews and restrict the affected rows to just those in the view specified,
use the ONLY keyword. For example, the following statement updates only persons
and not employees or students.

UPDATE ONLY(Person_v) SET address = ...

Updating Nested Table Columns in Views
You can modify a nested table by inserting new elements and updating or deleting
existing elements. Nested table columns that are virtual or synthesized, as in a view,
are not usually updatable. To overcome this, Oracle allows INSTEAD OF triggers to be
created on these columns.

The INSTEAD OF trigger defined on a nested table column (of a view) is fired when the
column is modified. Note that if the entire collection is replaced (by an update of the
parent row), the INSTEAD OF trigger on the nested table column is not fired.

Using INSTEAD OF Triggers to Control Mutating and Validation
INSTEAD OF triggers provide a way to update complex views that otherwise could not
be updated. They can also be used to enforce constraints, check privileges, and
validate DML statements. Using these triggers, you can control mutation that might be
caused by inserting, updating, and deleting in the objects created though an object
view.

For instance, to enforce the condition that the number of employees in a department
cannot exceed 10, you can write an INSTEAD OF trigger for the employee view. The

See Also: "Using INSTEAD OF Triggers to Control Mutating and
Validation" on page 6-11 for an example of an INSTEAD OF trigger

Note: In an object view hierarchy, UPDATE and DELETE statements
operate polymorphically just as SELECT statements do: the set of rows
picked out by an UPDATE or DELETE statement on a view implicitly
includes qualifying rows in any subviews of the specified view as
well.

See Also: "Object View Hierarchies" on page 6-17 for a discussion of
object view hierarchy and examples defining Student_v and
Employee_v views

Applying the Object Model to Remote Tables

6-12 Oracle Database Object-Relational Developer's Guide

trigger is not needed to execute the DML statement because the view can be updated,
but you need it to enforce the constraint.

Example 6–8 shows how to implement the trigger by means of SQL statements.

Example 6–8 Creating INSTEAD OF Triggers on a View

-- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
CREATE TRIGGER emp_instr INSTEAD OF INSERT on emp_view
FOR EACH ROW
DECLARE
 dept_var dept_t;
 emp_count integer;
BEGIN
 -- Enforce the constraint
 -- First get the department number from the reference
 UTL_REF.SELECT_OBJECT(:NEW.deptref, dept_var);

 SELECT COUNT(*) INTO emp_count
 FROM emp
 WHERE deptno = dept_var.deptno;
 IF emp_count < 9 THEN
 -- Do the insert
 INSERT INTO emp (empno, empname, salary, deptno)
 VALUES (:NEW.empno, :NEW.ename, :NEW.salary, dept_var.deptno);
 END IF;
END;
/

Applying the Object Model to Remote Tables
Although you cannot directly access remote tables as object tables, object views let you
access remote tables as if they were object tables.

Consider a company with two branches; one in Washington D.C. and another in
Chicago. Each site has an employee table. The headquarters in Washington has a
department table with a list of all the departments. To get a total view of the entire
organization, you can create views over the individual remote tables and then a
overall view of the organization.

To this requires the following:

■ Update the entry in listener.ora, such as: (ADDRESS=(PROTOCOL=tcp)
(HOST=stadv07.us.example.com)(PORT=1640))

■ Add entries to tnsnames.ora, such as: chicago=(DESCRIPTION=
(ADDRESS=(PROTOCOL=ipc)(KEY=linux)) (CONNECT_DATA=(SERVICE_
NAME=linux.regress.rdbms.dev.us.example.com)))

■ Provide CREATE DATABASE LINK code as shown in Example 6–9

Example 6–9 begins by creating an object view for each employee table and then
creates the global view.

Example 6–9 Creating an Object View to Access Remote Tables

-- Requires Ex. 6-2, Ex. 6-4, and Ex. 6-6
-- Example requires DB links, such as these, modify for your use and uncomment
-- CREATE DATABASE LINK chicago CONNECT TO hr IDENTIFIED BY hr USING 'inst1';
-- CREATE DATABASE LINK washington CONNECT TO hr IDENTIFIED BY hr USING 'inst1';

See Also: "Triggers for Object Tables" on page 2-5

Defining Complex Relationships in Object Views

Applying an Object Model to Relational Data 6-13

CREATE VIEW emp_washington_view (eno, ename, salary, job)
 AS SELECT e.empno, e.empname, e.salary, e.job
 FROM emp@washington e;

CREATE VIEW emp_chicago_view (eno, ename, salary, job)
 AS SELECT e.empno, e.empname, e.salary, e.job
 FROM emp@chicago e;

CREATE VIEW orgnzn_view OF dept_t WITH OBJECT IDENTIFIER (deptno)
 AS SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS deptaddr,
 CAST(MULTISET (
 SELECT e.eno, e.ename, e.salary, e.job
 FROM emp_washington_view e)
 AS employee_list_t) AS emp_list
 FROM dept d
 WHERE d.deptcity = 'Washington'
 UNION ALL
 SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS deptaddr,
 CAST(MULTISET (
 SELECT e.eno, e.ename, e.salary, e.job
 FROM emp_chicago_view e)
 AS employee_list_t) AS emp_list
 FROM dept d
 WHERE d.deptcity = 'Chicago';

This view has a list of all employees for each department. The UNION ALL clause is
used because employees cannot work in more than one department.

Defining Complex Relationships in Object Views
You can define circular references in object views using the MAKE_REF operator:
view_A can refer to view_B which in turn can refer to view_A. This allows an object
view to synthesize a complex structure such as a graph from relational data.

For example, in the case of the department and employee, the department object
currently includes a list of employees. To conserve space, you may want to put
references to the employee objects inside the department object, instead of
materializing all the employees within the department object. You can construct (pin)
the references to employee objects, and later follow the references using the dot
notation to extract employee information.

Because the employee object already has a reference to the department in which the
employee works, an object view over this model contains circular references between
the department view and the employee view.

You can create circular references between object views in two different ways:

■ First View After Second View

1. Create view A without any reference to view B.

2. Create view B, which includes a reference to view A.

Note: Both ways to create circular references require the setup
described in "Tables and Types to Demonstrate Circular View
References" on page 6-14.

Defining Complex Relationships in Object Views

6-14 Oracle Database Object-Relational Developer's Guide

3. Replace view A with a new definition that includes the reference to view B.

See the example in "Method 1: Re-create First View After Creating Second View"
on page 15

■ First View Using the FORCE Keyword

1. Create view A with a reference to view B using the FORCE keyword.

2. Create view B with a reference to view A. When view A is used, it is validated
and re-compiled.

See the example in "Method 2: Create First View Using FORCE Keyword" on
page 16

Method 2 has fewer steps, but the FORCE keyword may hide errors in the view
creation. You need to query the USER_ERRORS catalog view to see if there were any
errors during the view creation. Use this method only if you are sure that there are no
errors in the view creation statement.

Also, if errors prevent the views from being recompiled upon use, you must recompile
them manually using the ALTER VIEW COMPILE command.

Perform the setup described next before attempting to use either method of creating
circular view references.

Tables and Types to Demonstrate Circular View References
First, you need set up some relational tables and associated object types. Although the
tables contain some objects, they are not object tables. To access the data objects, you
will create object views later.

The emp table stores the employee information:

Example 6–10 Creating emp table to demonstrate circular references

CREATE TABLE emp
(empno NUMBER PRIMARY KEY,
 empname VARCHAR2(20),
 salary NUMBER,
 deptno NUMBER);

-- first create a dummy, that is, incomplete, department type, so emp_t type
-- created later will succeed

CREATE TYPE dept_t;
/

-- Create the employee type with a reference to the department, dept_t:
CREATE TYPE emp_t AS OBJECT
(eno NUMBER,
 ename VARCHAR2(20),
 salary NUMBER,
 deptref REF dept_t);
/

-- Represent the list of references to employees as a nested table:
CREATE TYPE employee_list_ref_t AS TABLE OF REF emp_t;
/

-- Create the department table as a relational table
CREATE TABLE dept

Defining Complex Relationships in Object Views

Applying an Object Model to Relational Data 6-15

(deptno NUMBER PRIMARY KEY,
 deptname VARCHAR2(20),
 deptstreet VARCHAR2(20),
 deptcity VARCHAR2(10),
 deptstate CHAR(2),
 deptzip VARCHAR2(10));

-- Create object types that map to columns from the relational tables:
CREATE TYPE address_t AS OBJECT
(street VARCHAR2(20),
 city VARCHAR2(10),
 state CHAR(2),
 zip VARCHAR2(10));
/

-- Fill in the definition for dept_t, the incomplete type you previously created:
CREATE OR REPLACE TYPE dept_t AS OBJECT
(dno NUMBER,
 dname VARCHAR2(20),
 deptaddr address_t,
 empreflist employee_list_ref_t);
/

As Example 6–10 indicates, you must create the emp table, then create a dummy
department type, dept_t which will enable the emp_t type to succeed once you
create it. After that, create emp_t with a reference to dept_t. Create a list of
references to employees as a nested table, employee_list_ref_t and create the
department table, dept. Then create an object type, address_t that has columns
mapping to the relational tables, and finally fill in the definition for the incomplete
dept_t.

The following is example data you could use:

insert into emp values(1,'John','900',100);
insert into emp values(2,'james','1000',100);
insert into emp values(3,'jack',2000,200);

Creating Object Views with Circular References
Now that you have established the underlying relational table definitions, in the
previous section, create the object views on top of them.

Method 1: Re-create First View After Creating Second View
First create the employee view with a null in the deptref column. Later, you can turn
that column into a reference.

Next, create the department view, which includes references to the employee objects.
This creates a list of references to employee objects, instead of including the entire
employee object.

Next, re-create the employee view with the reference to the department view.

Example 6–11 Creating an Object View with a Circular Reference, Method 1

-- Requires Ex. 6-10
CREATE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary, NULL
 FROM emp e;

-- create department view, including references to the employee objects

Defining Complex Relationships in Object Views

6-16 Oracle Database Object-Relational Developer's Guide

CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER(dno)
 AS SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
 CAST(MULTISET (
 SELECT MAKE_REF(emp_view, e.empno)
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_ref_t)
 FROM dept d;

CREATE OR REPLACE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,
 MAKE_REF(dept_view, e.deptno)
 FROM emp e;

This creates the views.

Method 2: Create First View Using FORCE Keyword
If you are sure that the view creation statement has no syntax errors, you can use the
FORCE keyword to force the creation of the first view without the other view being
present.

First, create an employee view that includes a reference to the department view, which
does not exist at this point. This view cannot be queried until the department view is
created properly.

Next, create a department view that includes references to the employee objects. You
do not have to use the FORCE keyword here, because emp_view already exists. This
allows you to query the department view, getting the employee object by
dereferencing the employee reference from the nested table empreflist.

Example 6–12 Creating view with FORCE Method 2

-- Requires Ex. 6-10
-- create employee view
CREATE OR REPLACE FORCE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,
 MAKE_REF(dept_view, e.deptno)
 FROM emp e;

-- create a department view that includes references to the employee objects
CREATE OR REPLACE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER(dno)
 AS SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
 CAST(MULTISET (
 SELECT MAKE_REF(emp_view, e.empno)
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_ref_t)
 FROM dept d;

-- Querying with DEREF method
SELECT DEREF(e.COLUMN_VALUE)
 FROM TABLE(SELECT e.empreflist FROM dept_view e WHERE e.dno = 100) e;

Note: If you previously ran Example 6–11, remove the views you
created before running Example 6–12.

Object View Hierarchies

Applying an Object Model to Relational Data 6-17

COLUMN_VALUE is a special name that represents the scalar value in a scalar nested
table. In this case, COLUMN_VALUE denotes the reference to the employee objects in the
nested table empreflist.

You can also access the employee number only, for all those employees whose name
begins with John.

Example 6–13 Querying with COLUMN_VALUE

-- Requires Ex. 6-10 and 6-12
SELECT e.COLUMN_VALUE.eno
 FROM TABLE(SELECT e.empreflist FROM dept_view e WHERE e.dno = 100) e
 WHERE e.COLUMN_VALUE.ename like 'John%';

To get a tabular output, unnest the list of references by joining the department table
with the items in its nested table:

Example 6–14 Querying with COLUMN_VALUE, Unnesting References

-- Requires Ex. 6-10 and 6-12
SELECT d.dno, e.COLUMN_VALUE.eno, e.COLUMN_VALUE.ename
 FROM dept_view d, TABLE(d.empreflist) e
 WHERE e.COLUMN_VALUE.ename like 'John%'
 AND d.dno = 100;

Finally, you can rewrite the preceding query to use the emp_view instead of the
dept_view to show how to navigate from one view to the other:

Example 6–15 Querying with COLUMN_VALUE, Querying emp_view

-- Requires Ex. 6-10 and 6-12
SELECT e.deptref.dno, DEREF(f.COLUMN_VALUE)
 FROM emp_view e, TABLE(e.deptref.empreflist) f
 WHERE e.deptref.dno = 100
 AND f.COLUMN_VALUE.ename like 'John%';

Object View Hierarchies
An object view hierarchy is a set of object views each of which is based on a different
type in a type hierarchy. Subviews in a view hierarchy are created under a superview,
analogously to the way subtypes in a type hierarchy are created under a supertype.

Each object view in a view hierarchy is populated with objects of a single type, but
queries on a given view implicitly address its subviews as well. Thus an object view
hierarchy gives you a simple way to frame queries that can return a polymorphic set of
objects of a given level of specialization or greater.

For example, suppose you have the following type hierarchy, with person_typ as the
root:

Object View Hierarchies

6-18 Oracle Database Object-Relational Developer's Guide

Figure 6–1 Object Type Hierarchy

If you have created an object view hierarchy based on this type hierarchy, with an
object view built on each type, you can query the object view that corresponds to the
level of specialization you are interested in. For instance, you can query the view of
student_typ to get a result set that contains only students, including part-time
students.

You can base the root view of an object view hierarchy on any type in a type hierarchy:
you do not need to start the object view hierarchy at the root type. Nor do you need to
extend an object view hierarchy to every leaf of a type hierarchy or cover every
branch. However, you cannot skip intervening subtypes in the line of descent. Any
subview must be based on a direct subtype of the type of its direct superview.

Just as a type can have multiple sibling subtypes, an object view can have multiple
sibling subviews. However, a subview based on a given type can participate in only
one object view hierarchy: two different object view hierarchies cannot each have a
subview based on the same subtype.

A subview inherits the object identifier (OID) from its superview. An OID cannot be
explicitly specified in any subview.

A root view can explicitly specify an object identifier using the WITH OBJECT ID
clause. If the OID is system-generated or the clause is not specified in the root view,
then subviews can be created only if the root view is based on a table or view that also
uses a system-generated OID.

The query underlying a view determines whether or not the view is updatable. For a
view to be updatable, its query must contain no joins, set operators, aggregate
functions, GROUP BY clause, DISTINCT clause, pseudocolumns, or expressions. The
same applies to subviews.

If a view is not updatable, you can define INSTEAD OF triggers to perform appropriate
DML actions. Note that INSTEAD OF triggers are not inherited by subviews.

All views in a view hierarchy must be in the same schema.

Note: You can create views of types that are non-instantiable. A
non-instantiable type cannot have instances, so ordinarily there
would be no point in creating an object view of such a type.
However, a non-instantiable type can have subtypes that are
instantiable. The ability to create object views of non-instantiable
types enables you to base an object view hierarchy on a type
hierarchy that contains a non-instantiable type.

Person_typ

Student_typ Employee_typ

ParTimeStudent_typ

Object View Hierarchies

Applying an Object Model to Relational Data 6-19

Creating an Object View Hierarchy
You build an object view hierarchy by creating subviews under a root view. You do
this by using the UNDER keyword in the CREATE VIEW statement, as show in
Example 6–17.

The same object view hierarchy can be based on different underlying storage models.
In other words, a variety of layouts or designs of underlying tables can produce the
same object view hierarchy. The design of the underlying storage model affects the
performance and updatability of the object view hierarchy.

This section describes three possible storage models. In the first, a flat model, all views
in the object view hierarchy are based on the same table. In the second, a horizontal
model, each view has a one-to-one correspondence with a different table. And in the
third, a vertical model, the views are constructed using joins.

To execute any of these storage models, first create types shown in Example 6–16.

Example 6–16 Creating Types for Storage Model Examples

CREATE TYPE person_typ AS OBJECT
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100)) NOT FINAL;
/

CREATE TYPE student_typ UNDER person_typ
(deptid NUMBER,
 major VARCHAR2(30)) NOT FINAL;
/

CREATE TYPE employee_typ UNDER person_typ
(empid NUMBER,
 mgr VARCHAR2(30));
/

This section contains the following topics:

■ The Flat Model

■ The Horizontal Model

■ The Vertical Model

The Flat Model
In the flat model, all the views in the hierarchy are based on the same table. In the
following example, the single table AllPersons contains columns for all the
attributes of person_typ, student_typ, and employee_typ.

Object View Hierarchies

6-20 Oracle Database Object-Relational Developer's Guide

Figure 6–2 Flat Storage Model for Object View Hierarchy

The typeid column identifies the type of each row. These possible values are the
types created in Example 6–16, 1 = person_typ, 2 = student_typ, and 3 =
employee_typ:

Example 6–17 creates the table AllPersons and then the views that make up the
object view hierarchy:

Example 6–17 Creating an Object View Hierarchy

-- Requires Ex. 6-16
CREATE TABLE AllPersons
(typeid NUMBER(1),
 ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100),
 deptid NUMBER,
 major VARCHAR2(30),
 empid NUMBER,
 mgr VARCHAR2(30));

CREATE VIEW Person_v OF person_typ
 WITH OBJECT OID(ssn) AS
 SELECT ssn, name, address
 FROM AllPersons
 WHERE typeid = 1;

CREATE VIEW Student_v OF student_typ UNDER Person_v
 AS
 SELECT ssn, name, address, deptid, major
 FROM AllPersons
 WHERE typeid = 2;

CREATE VIEW Employee_v OF employee_typ UNDER Person_v
 AS
 SELECT ssn, name, address, empid, mgr
 FROM AllPersons
 WHERE typeid = 3;

The flat model has the advantage of simplicity and poses no obstacles to supporting
indexes and constraints. Its drawbacks are:

TYPEID
1, 2, or 3

Person attributes (columns) Student attributes

Person attributes

Table AllPersons

View Person_v

Person attributes Student attributes

View Student_v

Person attributes Employee attributes

View Employee_v

Employee attributes

Object View Hierarchies

Applying an Object Model to Relational Data 6-21

■ A single table cannot contain more than 1000 columns, so the flat model imposes a
1000-column limit on the total number of columns that the object view hierarchy
can contain.

■ Each row of the table will have NULLs for all the attributes not belonging to its
type. Such non-trailing NULLs can adversely affect performance.

The Horizontal Model
On the horizontal model, each view or subview is based on a different table. In the
example, the tables are relational, but they could just as well be object tables for which
column substitutability is turned off.

Figure 6–3 Horizontal Storage Model for Object View Hierarchy

Example 6–18 creates tables and then views based on these tables.

Example 6–18 -- Creating Table Horizontal Model

-- Requires Ex. 6-16 and Ex. 6-17
CREATE TABLE only_persons
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100));

CREATE TABLE only_students
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100),
 deptid NUMBER,
 major VARCHAR2(30));

CREATE TABLE only_employees
(ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100),
 empid NUMBER,
 mgr VARCHAR2(30));

CREATE OR REPLACE VIEW Person_v OF person_typ
 WITH OBJECT OID(ssn) AS
 SELECT *
 FROM only_persons;

CREATE OR REPLACE VIEW Student_v OF student_typ UNDER Person_v
 AS

Table only_person

Person attributes

Table only_students

Person attributes

Table only_employees

Person attributes

View Person_v

Person attributes Student attributes

View Student_v

Person attributes Employee attributes

View Employee_v

Employee attributes

Student attributes

Person attributes

Object View Hierarchies

6-22 Oracle Database Object-Relational Developer's Guide

 SELECT *
 FROM only_students;

CREATE OR REPlACE VIEW Employee_v OF employee_typ UNDER Person_v
 AS
 SELECT *
 FROM only_employees;

The horizontal model is very efficient at processing queries of the form:

Example 6–19 -- Querying views horizontal model

-- Requires Ex. 6-16 and Ex. 6-17
-- add the following data
insert into only_persons values(1234,'John','abc');
insert into only_students values(1111,'James','abc',100,'CS');
insert into only_employees values(2222,'jack','abc',400,'Juliet');

SELECT VALUE(p) FROM Person_v p
 WHERE VALUE(p) IS OF (ONLY student_typ);

OUTPUT:
VALUE(P)(SSN, NAME, ADDRESS)
--
STUDENT_TYP(1111, 'James', 'abc', 100, 'CS')

Such queries only need to access a single physical table to get all the objects of the
specific type. The drawbacks of this model are that queries such as SELECT * FROM
view require performing a UNION over all the underlying tables and projecting the
rows over just the columns in the specified view. (See "Querying a View in a
Hierarchy" on page 6-23.) Also, indexes on attributes (and unique constraints) must
span multiple tables, and support for this does not currently exist.

The Vertical Model
In the vertical model, there is a physical table corresponding to each view in the
hierarchy, but the physical tables store only those attributes that are unique to their
corresponding subtypes.

Figure 6–4 Vertical Storage Model for Object View Hierarchy

Table all_personattrs

snn

Table all_studentattrs

snn

Table all_employeeattrs

Person attributes

View Person_v

Person attributes Student attributes

View Student_v

Person attributes Employee attributes

View Employee_v

Employee attributes:
empid, mgr

Student attributes:
deptid, major

typeid
1, 2, or 3

Person attributes:
ssn, name, address

Object View Hierarchies

Applying an Object Model to Relational Data 6-23

Example 6–20 creates tables and then corresponding views.

Example 6–20 Creating table, views vertical model

CREATE TABLE all_personattrs
(typeid NUMBER,
 ssn NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(100));

CREATE TABLE all_studentattrs
(ssn NUMBER,
 deptid NUMBER,
 major VARCHAR2(30));

CREATE TABLE all_employeeattrs
(ssn NUMBER,
 empid NUMBER,
 mgr VARCHAR2(30));

CREATE OR REPLACE VIEW Person_v OF person_typ
WITH OBJECT OID(ssn) AS
 SELECT ssn, name, address
 FROM all_personattrs
 WHERE typeid = 1;

CREATE OR REPLACE VIEW Student_v OF student_typ UNDER Person_v
 AS
 SELECT x.ssn, x.name, x.address, y.deptid, y.major
 FROM all_personattrs x, all_studentattrs y
 WHERE x.typeid = 2 AND x.ssn = y.ssn;

CREATE OR REPLACE VIEW Employee_v OF employee_typ UNDER Person_v
 AS
 SELECT x.ssn, x.name, x.address, y.empid, y.mgr
 FROM all_personattrs x, all_employeeattrs y
 WHERE x.typeid = 3 AND x.ssn = y.ssn;

The vertical model can efficiently process queries of the kind SELECT * FROM root_
view, and it is possible to index individual attributes and impose unique constraints
on them. However, to re-create an instance of a type, a join over object identifiers
(OIDs) must be performed for each level that the type is removed from the root in the
hierarchy.

Querying a View in a Hierarchy
You can query any view or subview in an object view hierarchy; rows are returned for
the declared type of the view that you query and for any of the subtypes of that type.
So, for instance, in an object view hierarchy based on the person_typ type hierarchy,
you can query the view of person_typ to get a result set that contains all persons,
including students and employees; or you can query the view of student_typ to get
a result set that contains only students, including part-time students.

In the SELECT list of a query, you can include either functions such as REF() and
VALUE() that return an object instance, or you can specify object attributes of the
declared type of the view, such as the name and ssn attributes of person_typ.

Object View Hierarchies

6-24 Oracle Database Object-Relational Developer's Guide

If you specify functions, to return object instances, the query returns a polymorphic
result set: that is, it returns instances of both the declared type of the view and any
subtypes of that type.

For example, the following query returns instances of persons, employees, and
students of all types, as well as REFs to those instances.

Example 6–21 Query with REF and Value

-- Requires Ex. 6-20
insert into all_personattrs values(1,1111,'John','abc');
insert into all_personattrs values(2,2222,'Jack','def');
insert into all_personattrs values(3,3333,'James','ghi');
insert into all_studentattrs values(2222,100,'CS');
insert into all_employeeattrs values(3333,444,'Julia');
SELECT REF(p), VALUE(p) FROM Person_v p;

OUTPUT:
REF(P)
--
VALUE(P)(SSN, NAME, ADDRESS)
--
00004A038A00465A6E6E779EC1F25FE040578CE70A447E0000001426010001000100290000000000
090600812A00078401FE0000000B03C20C0C00000000000000000000000000000000000000
PERSON_TYP(1111, 'John', 'abc')

00004A038A00465A6E6E779EC1F25FE040578CE70A447E0000001426010001000100290000000000
090600812A00078401FE0000000B03C2222200000000000000000000000000000000000000
EMPLOYEE_TYP(3333, 'James', 'ghi', 444, 'Julia')

00004A038A00465A6E6E779EC1F25FE040578CE70A447E0000001426010001000100290000000000

REF(P)
--
VALUE(P)(SSN, NAME, ADDRESS)
--
090600812A00078401FE0000000B03C2171700000000000000000000000000000000000000
STUDENT_TYP(2222, 'Jack', 'def', 100, 'CS')

If you specify individual attributes of the declared type of the view in the SELECT list
or do a SELECT *, again the query returns rows for the declared type of the view and
any subtypes of that type, but these rows are projected over columns for the attributes
of the declared type of the view, and only those columns are used. In other words, the
subtypes are represented only with respect to the attributes they inherit from and
share with the declared type of the view.

For example, the following query returns rows for all persons and rows for employees
and students of all types, but the result uses only the columns for the attributes of
person_typ—namely, name, ssn, and address. It does not show rows for attributes
added in the subtypes, such as the deptid attribute of student_typ.

SELECT * FROM Person_v;

To exclude subviews from the result, use the ONLY keyword. The ONLY keyword
confines the selection to the declared type of the view that you are querying:

SELECT VALUE(p) FROM ONLY(Person_v) p;

Object View Hierarchies

Applying an Object Model to Relational Data 6-25

Privileges for Operations on View Hierarchies
Generally, a query on a view with subviews requires only the SELECT privilege on the
view being referenced and does not require any explicit privileges on subviews. For
example, the following query requires only SELECT privileges on Person_v but not
on any of its subviews.

SELECT * FROM Person_v;

However, a query that selects for any attributes added in subtypes but not used by the
root type requires the SELECT privilege on all subviews as well. Such subtype
attributes may hold sensitive information that should reasonably require additional
privileges to access.

The following query, for example, requires SELECT privileges on Person_v and also
on Student_v, Employee_v (and on any other subview of Person_v) because the
query selects object instances and thus gets all the attributes of the subtypes.

SELECT VALUE(p) FROM Person_v p;

To simplify the process of granting SELECT privileges on an entire view hierarchy, you
can use the HIERARCHY option. Specifying the HIERARCHY option when granting a
user SELECT privileges on a view implicitly grants SELECT privileges on all current
and future subviews of the view as well. For example:

GRANT SELECT ON Person_v TO user WITH HIERARCHY OPTION;

A query that excludes rows belonging to subviews also requires SELECT privileges on
all subviews. The reason is that information about which rows belong exclusively to
the most specific type of an instance may be sensitive, so the system requires SELECT
privileges on subviews for queries (such as the following one) that exclude all rows
from subviews.

SELECT * FROM ONLY(Person_v);

Object View Hierarchies

6-26 Oracle Database Object-Relational Developer's Guide

7

Managing Oracle Objects 7-1

7 Managing Oracle Objects

This chapter explains how Oracle objects work in combination with the rest of the
database, and how to perform DML and DDL operations on them. It contains the
following major sections:

■ Privileges on Object Types and Their Methods

■ Type Dependencies

■ Synonyms for Object Types

■ Performance Tuning

Privileges on Object Types and Their Methods
Privileges for object types exist at the system level and the schema object level.

This section contains the following topics:

■ System Privileges for Object Types

■ Schema Object Privileges

■ Using Types in New Types or Tables

■ Example: Privileges on Object Types

■ Access Privileges on Objects, Types, and Tables

System Privileges for Object Types
Oracle database defines the following system privileges for object types:

■ CREATE TYPE enables you to create object types in your own schema

■ CREATE ANY TYPE enables you to create object types in any schema

■ ALTER ANY TYPE enables you to alter object types in any schema

■ DROP ANY TYPE enables you to drop named types in any schema

■ EXECUTE ANY TYPE enables you to use and reference named types in any schema

■ UNDER ANY TYPE enables you to create subtypes under any non-final object types

■ UNDER ANY VIEW enables you to create subviews under any object view

The following roles are helpful:

■ The RESOURCE role includes the CREATE TYPE system privilege.

Privileges on Object Types and Their Methods

7-2 Oracle Database Object-Relational Developer's Guide

■ The DBA role includes all of these privileges.

Schema Object Privileges
Two schema object privileges apply to object types:

■ EXECUTE enables you to use the type to:

■ Define a table.

■ Define a column in a relational table.

■ Declare a variable or parameter of the named type.

EXECUTE lets you invoke the methods of a type, including the constructor.

Method execution and the associated permissions are the same as for stored
PL/SQL procedures.

■ UNDER enables you to create a subtype or subview under the type or view on
which the privilege is granted.

Only a grantor with the UNDER privilege WITH GRANT OPTION on the direct
supertype or superview can grant the UNDER privilege on a subtype or subview.

The phrase WITH HIERARCHY OPTION grants a specified object privilege on all
subtypes of the object. This option is meaningful only with the SELECT object
privilege granted on an object view in an object view hierarchy. In this case, the
privilege applies to all subviews of the view on which the privilege is granted.

Using Types in New Types or Tables
In addition to the permissions detailed in the previous sections, you need specific
privileges to:

■ Create types or tables that use types created by other users.

■ Grant use of your new types or tables to other users.

You must have either the EXECUTE ANY TYPE system privilege or the EXECUTE object
privilege for any type used to define a new type or table. You must have been granted
these privileges explicitly, and not through a role.

To grant access to your new type or table to other users, you must have either the
required EXECUTE object privileges with the GRANT option or the EXECUTE ANY TYPE
system privilege with the option WITH ADMIN OPTION. You must have been granted
these privileges explicitly, not through a role.

Example: Privileges on Object Types
Example 7–1 creates three users or schemas, USER1, USER2, and USER3, and grants
them the CREATE SESSION and RESOURCE roles. Some of the subsequent examples in
this chapter use these schemas.

This example requires you to create and use several passwords. If you plan to run the
example, make these changes to your SQL code first.

Privileges on Object Types and Their Methods

Managing Oracle Objects 7-3

Example 7–1 Creating User Schemas

-- Requires passwords
CONNECT SYSTEM
-- Enter password
CREATE USER user1 PROFILE default
 IDENTIFIED BY password DEFAULT TABLESPACE example ACCOUNT UNLOCK;
GRANT CREATE SESSION TO user1;
GRANT RESOURCE TO user1;
GRANT CREATE SYNONYM TO user1;
GRANT CREATE PUBLIC SYNONYM TO user1;
GRANT DROP PUBLIC SYNONYM TO user1;
CREATE USER user2 PROFILE default
 IDENTIFIED BY password DEFAULT TABLESPACE example ACCOUNT UNLOCK;
GRANT CREATE SESSION TO user2;
GRANT RESOURCE TO user2;
CREATE USER user3 PROFILE default
 IDENTIFIED BY password DEFAULT TABLESPACE example ACCOUNT UNLOCK;
GRANT CREATE SESSION TO user3;
GRANT RESOURCE TO user3;

Example 7–2 requires the input of a password, USER1 performs the CREATE and
GRANT Data Definition Language (DDL) statements in the USER1 schema:

Example 7–2 Granting Privileges on Object Types

-- Requires Ex. 7-1 and the input of a password
CONNECT user1
-- Enter password

CREATE TYPE type1 AS OBJECT (attr1 NUMBER);
/
CREATE TYPE type2 AS OBJECT (attr2 NUMBER);
/
GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

In Example 7–3, USER2 performs the CREATE DDL statement in the USER2 schema:

Example 7–3 Performing DDL Statements in USER2 Schema

-- Requires Ex. 7-1, 7-2 and password input
CONNECT user2
-- Enter password
CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (attr3 user1.type2);
/
CREATE TABLE tab2 (col1 user1.type2);

In Example 7–4, the first two statements succeed because USER2 was granted the
EXECUTE privilege with the GRANT option on USER1's TYPE2 in the last line of

Note: For simplicity, this example does not perform the password
management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password
management guidelines, and disable any sample accounts. See Oracle
Database Security Guide for password management guidelines and
other security recommendations.

Privileges on Object Types and Their Methods

7-4 Oracle Database Object-Relational Developer's Guide

Example 7–2 and Example 7–3 created type3 as an object using attr3
user1.type2.

However, the last grant Example 7–4 fails because USER2 has not been granted the
EXECUTE privilege with the GRANT option on USER1.TYPE1.

Example 7–4 Performing Grants to USER3

-- Requires Ex. 7-1, 7-2, and 7-3
GRANT EXECUTE ON type3 TO user3;
GRANT SELECT ON tab2 TO user3;

-- Privileges on Object Types
GRANT SELECT ON tab1 TO user3 -- incorrect statement;

In Example 7–5, USER3 has the necessary privileges to perform the following actions:

Example 7–5 Creating Tables and Types

-- Requires Ex. 7-1, 7-2, 7-3, and 7-4
CONNECT user3
-- Enter password
CREATE TYPE type4 AS OBJECT (attr4 user2.type3);
/
CREATE TABLE tab3 OF type4;

Access Privileges on Objects, Types, and Tables
Object types only make use of the EXECUTE privilege, but object tables use all the same
privileges as relational tables:

■ SELECT lets you access an object and its attributes from the table.

■ UPDATE lets you modify attributes of objects in the table.

■ INSERT lets you add new objects to the table.

■ DELETE lets you delete objects from the table.

Similar table and column privileges regulate the use of table columns of object types.

Selecting columns of an object table does not require privileges on the type of the
object table. Selecting the entire row object, however, does.

Consider the following schema and queries in Example 7–6:

Example 7–6 SELECT Privileges on Type Access

-- Requires Ex. 7-1, 7-2, 7-3, 7-4, and 7-5
CREATE TYPE emp_type AS OBJECT (
 eno NUMBER,
 ename VARCHAR2(36));
/
CREATE TABLE emp OF emp_type; // an object table
GRANT SELECT on emp TO user1;
SELECT VALUE(e) FROM emp e;
SELECT eno, ename FROM emp;

For both queries, Oracle database checks the user's SELECT privilege for the object
table emp. For the first query, the user needs to obtain the emp_type type information
to interpret the data. When the query accesses the emp_type type, the database checks
the user's EXECUTE privilege.

Type Dependencies

Managing Oracle Objects 7-5

The second query, however, does not involve named types, so the database does not
check type privileges.

Additionally, USER3 can perform queries such as these:

SELECT t.col1.attr2 from user2.tab2 t;
SELECT t.attr4.attr3.attr2 FROM tab3 t;

Note that in both queries, USER3 does not have explicit privileges on the underlying
type. However, the statement succeeds because the type and table owners have the
necessary privileges with the GRANT option.

Oracle database checks privileges on the following requests and returns an error if the
requestor does not have the privilege for the action:

■ Pinning an object in the object cache using its REF value causes the database to
check the SELECT privilege on the object table containing the object and the
EXECUTE privilege on the object type.

■ Modifying an existing object or flushing an object from the object cache causes the
database to check the UPDATE privilege on the destination object table. Flushing a
new object causes the database to check the INSERT privilege on the destination
object table.

■ Deleting an object causes the database to check the DELETE privilege on the
destination table.

■ Invoking a method causes the database to check the EXECUTE privilege on the
corresponding object type.

Oracle database does not provide column level privileges for object tables.

Type Dependencies
This section discusses type dependencies in two broad categories:

■ Situations where types depend upon each other for their definitions, where one
type might be part of the definition of another type.

■ Situations where creating or dropping types is complicated by dependencies that
the type has such, as tables or types.

This section covers the following topics:

■ Creating Incomplete Types

■ Completing Incomplete Types

■ Manually Recompiling a Type

■ Using CREATE OR REPLACE TYPE with Type and Table Dependencies

■ Type Dependencies of Substitutable Tables and Columns

■ The DROP TYPE FORCE Option

■ Creating a Type Synonym

■ Using a Type Synonym

See Also: Oracle Call Interface Programmer's Guide for tips and
techniques for using OCI program effectively with objects

Type Dependencies

7-6 Oracle Database Object-Relational Developer's Guide

Creating Incomplete Types
Types that depend on each other for their definitions, either directly or through
intermediate types, are called mutually dependent. For example, you might want to
define object types employee and department in such a way that one attribute of
employee is the department the employee belongs to and one attribute of
department is the employee who manages the department.

If you visualize a diagram with arrows showing the relationships among a set of
mutually dependent types, the connections form a loop. To define such a circular
dependency, you must use REFs for at least one segment of the circle.

For example, you can define the types show in Example 7–7.

Example 7–7 Creating Dependent Object Types

-- Requires Ex. 7-1 and password
CONNECT user1
-- Enter password
ALTER SESSION SET PLSQL_WARNINGS = 'enable:all';

CREATE TYPE department; // a placeholder
/

CREATE TYPE employee AS OBJECT (
 name VARCHAR2(30),
 dept REF department,
 supv REF employee);
/

CREATE TYPE emp_list AS TABLE OF employee;
/

CREATE TYPE department AS OBJECT (
 name VARCHAR2(30),
 mgr REF employee,
 staff emp_list);
/

This is a legal set of mutually dependent types and a legal sequence of SQL DDL
statements. Oracle database compiles it without errors.

Notice that the code in Example 7–7 creates the type department twice. The first
statement is an optional, incomplete declaration of department that serves as a
placeholder for the REF attribute of employee to point to. The declaration is
incomplete in that it omits the AS OBJECT phrase and lists no attributes or methods.
These are specified later in the full declaration that completes the type. In the
meantime, department is created as an incomplete object type. This enables the
compilation of employee to proceed without errors.

If you do not create incomplete types as placeholders, types that refer to the missing
types still compile, but the compilation proceeds with errors. For example, if
department did not exist at all, Oracle database would create it as an incomplete
type and compile employee with errors. Then employee would be recompiled the
next time that some operation accesses it. This time, if all the types it depends on have
been created and its dependencies are satisfied, it compiles without errors.

Incomplete types also enable you to create types that contain REF attributes to a
subtype that has not yet been created. To create such a supertype, first create an

Type Dependencies

Managing Oracle Objects 7-7

incomplete type of the subtype to be referenced. Create the complete subtype after you
create the supertype.

Completing Incomplete Types
When you have created all the types referenced by an incomplete type, complete the
declaration of the incomplete type, because there is no longer any need for it to remain
incomplete. Completing the type recompiles it and enables the system to release
various locks.

To complete an incomplete type, you execute a CREATE TYPE statement that specifies
the attributes and methods of the type, as shown at the end of Example 7–7.

Also, you must complete any incomplete types that the database creates for you. If, as
discussed in the preceding section, you did not explicitly create department as an
incomplete type, then the database did. In this case, you still need to complete it.

You must complete an incomplete object type as an object type: you cannot complete
an object type as a collection type (a nested table type or an array type). The only
alternative is to drop the type.

Manually Recompiling a Type
If a type was created with compilation errors, and you attempt an operation on it, such
as creating tables or inserting rows, you may receive an error. You need to recompile
the type before attempting the operation. To manually recompile a type, execute an
ALTER TYPE typename COMPILE statement. After you have successfully compiled
the type, attempt the operation again.

Using CREATE OR REPLACE TYPE with Type and Table Dependencies
The CREATE OR REPLACE TYPE statement throws an error if the type being replaced
has table or type dependencies. This applies to objects, varrays, and nested table types.
This also applies to type dependencies involving either inheritance or type
composition (embedding one type into another). The latter might be a situation where
one type is attribute of another.

Using the FORCE option with a CREATE OR REPLACE TYPE statement enables you to
replace a type if it has type dependencies, but not table dependencies. Table
dependencies still cause errors.

Example 7–8 shows a CREATE OR REPLACE statement (second statement) that fails due
to a type dependency.

Example 7–8 CREATE OR REPLACE Type and Table Failure

SQL> CREATE type t1 AS OBJECT (a number) not final;
 2 /
Type created.

SQL> CREATE TYPE t2 UNDER t1 (b varchar(10));
 2 /
Type created.

SQL> CREATE OR REPLACE TYPE t1 AS OBJECT (c varchar(20));
 2 /
CREATE OR REPLACE TYPE t1 AS OBJECT (c varchar(20));
*

Type Dependencies

7-8 Oracle Database Object-Relational Developer's Guide

ERROR at line 1:
ORA-02303: cannot drop or replace a type with type or table dependents

Example 7–9 shows code in which a CREATE OR REPLACE FORCE statement succeeds
in replacing a type that has a type dependency and then creates a table using the
parent type. However, the final CREATE OR REPLACE FORCE statement fails because
the type now has a table dependency and even with the FORCE option, a type with a
table dependency cannot be replaced.

Example 7–9 CREATE OR REPLACE with FORCE

SQL> CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (c varchar(20));
 2 /
Type created.

SQL> CREATE TABLE tb1 (c1 t1);
Table created.

SQL> CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (d number);
 2 /
CREATE OR REPLACE TYPE t1 FORCE AS OBJECT (d number);
*
ERROR at line 1:
ORA-22866: cannot replace a type with table dependents

Type Dependencies of Substitutable Tables and Columns
A substitutable table or column of a specific type is dependent not only on that type
but on all subtypes of the type as well. This is because a hidden column is added to the
table for each attribute added in a subtype of the type. The hidden columns are added
even if the substitutable table or column contains no data of that subtype.

In Example 7–10, a persons table of type person_typ is dependent not only on
person_typ but also on the person_typ subtypes student_typ and part_time_
student_typ.

If you attempt to drop a subtype that has a dependent type, table, or column, the DROP
TYPE statement returns an error and aborts. Consequently, trying to drop a part_
time_student_typ raises an error because of the dependent persons table.

If dependent tables or columns exist but contain no data of the type being dropped,
you can use the VALIDATE keyword to drop the type. The VALIDATE keyword causes
Oracle database to check for actual stored instances of the specified type and to drop
the type if none are found. This also removes hidden columns associated with
attributes unique to the type.

In Example 7–10, the first DROP TYPE statement fails because part_time_student_
typ has a dependent table (persons). But if persons contains no instances of part_
time_student_typ (nor does any other dependent table or column), the VALIDATE
keyword causes the second DROP TYPE statement to succeed.

See Also: Oracle Database PL/SQL Language Reference for details of
the CREATE OR REPLACE TYPE SQL statement

See Also: "Substituting Types in a Type Hierarchy" on page 2-23 for
further explanation of substitutability

Synonyms for Object Types

Managing Oracle Objects 7-9

Example 7–10 DROP TYPE with and without VALIDATE

CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20))
 NOT FINAL;
/
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30))
NOT FINAL;
/
CREATE TYPE part_time_student_typ UNDER student_typ (number_hours NUMBER);
/
CREATE TABLE persons OF person_typ;
-- Following generates an error due to presence of Persons table
DROP TYPE part_time_student_typ -- incorrect statement;
-- Following succeeds if there are no stored instances of part_time_student_typ
DROP TYPE part_time_student_typ VALIDATE;

The DROP TYPE FORCE Option
The DROP TYPE statement also has a FORCE option that causes the type to be dropped
even though it may have dependent types or tables. Use the FORCE option with great
care, because any dependent types or tables that do exist are marked invalid and
become inaccessible when the type is dropped. Data in a table that is marked invalid
for this reason can never be accessed again. The only action that can be performed on
such a table is to drop it.

See "Type Evolution" on page 8-6 for information about how to alter a type.

Synonyms for Object Types
Just as you can create synonyms for tables, views, and various other schema objects,
you can also define synonyms for object types.

Synonyms for types have the same advantages as synonyms for other kinds of schema
objects: they provide a location-independent way to reference the underlying schema
object. An application that uses public type synonyms can be deployed unaltered, in
any schema of a database, without requiring a qualified type name with the schema
name.

This section contains the following topics:

■ Creating a Type Synonym

■ Using a Type Synonym

Note: Oracle recommends that you always use the VALIDATE
option while dropping subtypes.

See Also: Oracle Database Administrator's Guide for more
information on synonyms in general

Synonyms for Object Types

7-10 Oracle Database Object-Relational Developer's Guide

Creating a Type Synonym
You create a type synonym with a CREATE SYNONYM statement. The user must have
been granted CREATE SYNONYM and CREATE PUBLIC SYNONYM privileges.

For example, these statements create a type typ1 and then create a synonym for it:

Example 7–11 CREATE TYPE / SYNONYM for user1

-- Example requires Ex.7-1 which created user1 and granted it the CREATE SYNONYM
-- and CREATE PUBLIC SYNONYM privileges
-- connect as user1 if not already connected.

CREATE TYPE typ1 AS OBJECT (x number);
/
CREATE SYNONYM syn1 FOR typ1;

Synonyms can be created for collection types, too. The following example creates a
synonym for a nested table type:

CREATE TYPE typ2 AS TABLE OF NUMBER;
/
CREATE SYNONYM syn2 FOR typ2;

You create a public synonym by using the PUBLIC keyword:

CREATE TYPE shape AS OBJECT (name VARCHAR2(10));
/
CREATE PUBLIC SYNONYM pub_shape FOR shape;

With the REPLACE option you can make the synonym point to a different underlying
type. For example, the following statement causes syn1 to point to type typ2 instead
of the type it formerly pointed to:

CREATE OR REPLACE SYNONYM syn1 FOR typ2;

Using a Type Synonym
You can use a type synonym anywhere that you can refer to a type. For instance, you
can use a type synonym in a DDL statement to name the type of a table column or
type attribute.

Example 7–12 uses synonym syn1 to specify the type of an attribute in type typ3:

Example 7–12 Using a Type Synonym in a Create Statement

-- Requires Ex 7-1 and connection as user1
-- drop syn1 and typ1 if created for Ex. 7-12
CREATE TYPE typ1 AS OBJECT (x number);
/
CREATE SYNONYM syn1 FOR typ1;

CREATE TYPE typ3 AS OBJECT (a syn1);
/

In the next statement, the type synonym syn1 calls the constructor of the object type
typ1, for which syn1 is a synonym. The statement returns an object instance of typ1:

SELECT syn1(0) FROM dual;

Synonyms for Object Types

Managing Oracle Objects 7-11

In the following, syn2 is a synonym for a nested table type. The synonym replaces the
actual type name in a CAST expression.

SELECT CAST(MULTISET(SELECT eno FROM USER3.EMP) AS syn2) FROM dual;

This code returns the following output:

SQL> -- Type synonym used to call a constructor / nested table
SELECT syn1(0) FROM dual;
SELECT CAST(MULTISET(SELECT eno FROM USER3.EMP) AS syn2) FROM
 dual;

SQL>
SYN1(0)(X)
--
TYP1(0)

SQL>
CAST(MULTISET(SELECTENOFROMUSER3.EMP)ASSYN2)
--
TYP2()

Type synonyms can be used in the following kinds of statements:

■ DML statements: SELECT, INSERT, UPDATE, DELETE, FLASHBACK TABLE,
EXPLAIN PLAN, and LOCK TABLE

■ DDL statements: AUDIT, NOAUDIT, GRANT, REVOKE, and COMMENT

Describing Schema Objects That Use Synonyms
If a type or table has been created using type synonyms, the DESCRIBE command
shows the synonyms in place of the types they represent. Similarly, catalog views,
which show type names, such as USER_TYPE_ATTRS, show the type synonym names
in their place.

You can query the catalog view USER_SYNONYMS to find out the underlying type of a
type synonym.

Dependents of Type Synonyms
A type that directly or indirectly references a synonym in its type declaration is a
dependent of that synonym. Thus, in the following line from Example 7–12, type typ3
is a dependent type of synonym syn1.

CREATE TYPE typ3 AS OBJECT (a syn1);
/

Other kinds of schema objects that reference synonyms in their DDL statements also
become dependents of those synonyms. An object that depends on a type synonym
depends on both the synonym and the underlying type of the synonym.

The dependency relationships of a synonym affect your ability to drop or rename the
synonym. Dependent schema objects are also affected by some operations on
synonyms. The following sections describe these various ramifications.

See Also: Chapter 2 of Oracle Database Reference for a complete list of
the data dictionary catalog views

Performance Tuning

7-12 Oracle Database Object-Relational Developer's Guide

Restriction on Replacing a Type Synonym
You can replace a synonym only if it has no dependent tables or valid user-defined
types. Replacing a synonym is equivalent to dropping it and then re-creating a new
synonym with the same name.

Dropping Type Synonyms
You drop a synonym with the DROP SYNONYM statement as shown in Example 7–13.

Example 7–13 Dropping Type Synonyms

CREATE SYNONYM syn4 FOR typ1;

DROP SYNONYM syn4;

You cannot drop a type synonym if it has table or valid object types as dependents
unless you use the FORCE option. The FORCE option causes any columns that directly
or indirectly depend on the synonym to be marked unused, just as if the actual types
of the columns were dropped. (A column indirectly depends on a synonym if, for
instance, the synonym is used to specify the type of an attribute of the declared type of
the column.)

Any dependent schema objects of a dropped synonym are invalidated. They can be
revalidated by creating a local object or a new public synonym with the same name as
the dropped synonym.

Dropping the underlying base type of a type synonym has the same effect on
dependent objects as dropping the synonym.

Renaming Type Synonyms
You can rename a type synonym with the RENAME statement. Renaming a synonym is
equivalent to dropping it and then re-creating it with a new name. You cannot rename
a type synonym if it has dependent tables or valid object types. The following example
fails because synonym syn1 has a dependent object type:

RENAME syn1 TO syn3 -- invalid statement;

Public Type Synonyms and Local Schema Objects
You cannot create a local schema object that has the same name as a public synonym if
the public synonym has a dependent table or valid object type in the local schema that
will hold the new schema object. Nor can you create a local schema object that has the
same name as a private synonym in the same schema.

For instance, in the following example, table shape_tab is a dependent table of
public synonym pub_shape because the table has a column that uses the synonym in
its type definition. Consequently, the attempt to create a table that has the same name
as public synonym pub_shape, in the same schema as the dependent table, fails:

-- Following uses public synonym pub_shape
CREATE TABLE shape_tab (c1 pub_shape);
-- Following is not allowed
CREATE TABLE pub_shape (c1 NUMBER) -- invalid statement;

Performance Tuning
When tuning objects, the following items need to be addressed:

Performance Tuning

Managing Oracle Objects 7-13

■ How objects and object views consume CPU and memory resources during
runtime

■ How to monitor memory and CPU resources during runtime

■ How to manage large numbers of objects

Some of the key performance factors are the following:

■ DBMS_STATS package to collect statistics

■ tkprof to profile execution of SQL commands

■ EXPLAIN PLAN to generate the query plans

See Also: Oracle Database Performance Tuning Guide for details on
measuring and tuning the performance of your application

Performance Tuning

7-14 Oracle Database Object-Relational Developer's Guide

8

Advanced Topics for Oracle Objects 8-1

8 Advanced Topics for Oracle Objects

The previous chapters in this book discuss topics that you need to get started with
Oracle objects. The topics in this chapter are of interest once you start applying
object-relational techniques to large-scale applications or complex schemas.

The chapter contains these topics:

■ Storage of Objects

■ Creating Indexes on Typeids or Attributes

■ Type Evolution

■ System-Defined and User-Defined Constructors

■ Transient and Generic Types

■ User-Defined Aggregate Functions

■ How Locators Improve the Performance of Nested Tables

Storage of Objects
Oracle database automatically maps the complex structure of object types into simple
table structure for storage.

This section discusses these related topics:

■ Leaf-Level Attributes

■ How Row Objects Are Split Across Columns

■ Hidden Columns for Tables with Column Objects

■ Hidden Columns for Substitutable Columns and Object Tables

■ Storage of REFs

■ Internal Layout of Nested Tables

■ Internal Layout of VARRAYs

Leaf-Level Attributes
An object type is like a tree structure, where the branches represent the attributes.
Attributes that are objects sprout subbranches with their own attributes.

Ultimately, each branch ends at an attribute that is a built-in type; such as NUMBER,
VARCHAR2, or REF, or a collection type, such as VARRAY or nested table. Each of these
leaf-level attributes of the original object type is stored in a table column.

Storage of Objects

8-2 Oracle Database Object-Relational Developer's Guide

Leaf-level attributes that are not collection types are called the leaf-level scalar
attributes of the object type.

The following topics relate to the discussion of object tables and relational tables in
"How Objects are Stored in Tables" on page 1-6.

How Row Objects Are Split Across Columns
In an object table, Oracle database stores the data for every leaf-level scalar or REF
attribute in a separate column.

When you retrieve or change attributes of row objects in an object table, the database
performs the corresponding operations on the columns of the table. Accessing the
value of the row object itself invokes the default constructor for the type, using the
columns of the object table as arguments and produces a copy of the object.

The database stores the system-generated object identifier in a hidden column. The
database uses the object identifier to construct REFs to the object.

Hidden Columns for Tables with Column Objects
When a table (relational table) is defined with a column of an object type, the database
adds hidden columns to the table for the leaf-level attributes of the object type. Each
object-type column also has a corresponding hidden column to store the NULL
information for the column objects (that is, the atomic nulls of the top-level and the
nested objects).

Hidden Columns for Substitutable Columns and Object Tables
A substitutable column or object table has a hidden column not only for each attribute
of the object type of the column but also for each attribute added in any subtype of the
object type. These columns store the values of those attributes for any subtype
instances inserted in the substitutable column.

Besides the type-discriminant column and the null-image column, the following are
associated with a substitutable column of person_typ, created by Example 8–1

■ A hidden column for each of the attributes of person_typ: idno, name, and
phone

■ Hidden columns for attributes of the subtypes of person_typ

Thus, the following might be associated with a substitutable column of person_typ:
the attributes dept_id and major (for student_typ) and number_hours (for
part_time_student_typ).

When you create a subtype, the database automatically adds hidden columns for new
attributes in the subtype to tables containing a substitutable column of any of the
ancestor types of the new subtype. These retrofit the tables to store data of the new
type. If, for some reason, the columns cannot be added, creation of the subtype is
rolled back.

Note: Each VARRAY is also stored in a column, unless it is too large.
Oracle database stores leaf-level attributes of nested table types in
separate tables associated with the object table. You must declare these
tables as part of the object table declaration. See "Internal Layout of
VARRAYs" on page 8-5 and "Internal Layout of Nested Tables" on
page 8-4.

Storage of Objects

Advanced Topics for Oracle Objects 8-3

When you drop a subtype using DROP TYPE with the VALIDATE option, the database
automatically drops hidden columns for attributes unique to the subtype that do not
contain data. Errors are raised if these columns contain data.

Example 8–1 creates types needed for subsequent examples in this chapter

Example 8–1 Creating Types and Inserting in Tables

-- drop any of these objects created for Ex.7-10
CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER)
 NOT FINAL;
/
CREATE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
END;
/
CREATE TYPE student_typ UNDER person_typ (
 dept_id NUMBER,
 major VARCHAR2(30))
NOT FINAL;
/
CREATE TYPE part_time_student_typ UNDER student_typ (
 number_hours NUMBER);
/
CREATE TYPE employee_typ UNDER person_typ (
 emp_id NUMBER,
 mgr VARCHAR2(30));
/
CREATE TABLE person_obj_table OF person_typ; // an object table
INSERT INTO person_obj_table
 VALUES (person_typ(12, 'Bob Jones', '650-555-0130'));
INSERT INTO person_obj_table
 VALUES (student_typ(51, 'Joe Lane', '1-650-555-0140', 12, 'HISTORY'));
INSERT INTO person_obj_table
 VALUES (part_time_student_typ(52, 'Kim Patel', '1-650-555-0135', 14,
 'PHYSICS', 20));

Substitutable columns are associated with hidden type-discriminant columns. The
hidden columns contains an identifier, called a typeid, that identifies the most specific
type of each object in the substitutable columns. Typically, a typeid (RAW) is one byte,
though it can be as big as four bytes for a large hierarchy.

You can find the typeid of a specified object instance using the function SYS_TYPEID.

Example 8–2 retrieves typeids of object instances stored in the substitutable object
table created in Example 8–1:

Example 8–2 Querying for Typeids of Objects Stored in the Table

-- Requires Ex. 8-1
SELECT name, SYS_TYPEID(VALUE(p)) typeid
 FROM person_obj_table p;

NAME TYPEID

Storage of Objects

8-4 Oracle Database Object-Relational Developer's Guide

------------------------------ ---------------------------
Bob Jones 01
Joe Lane 02
Kim Patel 03

The catalog views USER_TYPES, DBA_TYPES, and ALL_TYPES contain a TYPEID
column (not hidden) that gives the typeid value for each type. You can join on this
column to get the type names corresponding to the typeids in a type-discriminant
column.

Storage of REFs
When the database constructs a REF to a row object, the constructed REF is made up of
the object identifier (OID), some metadata of the object table, and, optionally, the
ROWID.

The size of a REF in a column of REF type depends on the storage requirements
associated with the column, as follows:

■ If the column is declared as a REF WITH ROWID, the database stores the ROWID in
the REF column. The ROWID hint is ignored for object references in constrained
REF columns.

■ If a column is declared as a REF with a SCOPE clause, the column decreases due to
the omission of the object table metadata and the ROWID. A scoped REF is 16 bytes
long.

If the object identifier is primary-key based, the database may create one or more
internal columns to store the values of the primary key, depending on how many
columns comprise the primary key.

Internal Layout of Nested Tables
The rows of a nested table are stored in a separate storage table. Each nested table
column has a single associated storage table. The storage table holds all the elements
for all of the nested tables in that column. The storage table has a hidden NESTED_
TABLE_ID column with a system-generated value that lets Oracle database map the
nested table elements back to the appropriate row.

You can speed up queries that retrieve entire collections by making the storage table
index-organized. Include the ORGANIZATION INDEX clause inside the STORE AS
clause.

See "Nested Table Storage" on page 9-10.

A nested table type can contain objects or scalars:

■ If the elements are objects, the storage table is like an object table: the top-level
attributes of the object type become the columns of the storage table. However,
you cannot construct REFs to objects in a nested table because a nested table row
has no object identifier column.

See Also: "SYS_TYPEID" on page 2-35 for more information about
SYS_TYPEID, typeids, and type-discriminant columns.

Note: When a REF column references row objects whose object
identifiers are derived from primary keys, it is referred to as a
primary-key-based REF or pkREF. Columns containing pkREFs
must be scoped or have a referential constraint.

Creating Indexes on Typeids or Attributes

Advanced Topics for Oracle Objects 8-5

■ If the elements are scalars, the storage table contains a single column called
COLUMN_VALUE that contains the scalar values.

Internal Layout of VARRAYs
All the elements of a VARRAY are stored in a single column. Depending upon the size
of the array, it may be stored inline or in a BLOB. See Storage Considerations for
Varrays on page 9-9 for details.

Creating Indexes on Typeids or Attributes
This section discusses the use of indexes on typeids and attributes.

This section contains the following topics:

■ Indexing a Type-Discriminant Column

■ Indexing Subtype Attributes of a Substitutable Column

Indexing a Type-Discriminant Column
Using the SYS_TYPEID function, you can build an index on the hidden
type-discriminant column of substitutable columns. The type-discriminant column
contains typeids that identify the most specific type of every object instance stored in
the substitutable column. The system uses this information to evaluate queries that
filter by type using the IS OF predicate, but you can access the typeids for your own
purposes using the SYS_TYPEID function.

Generally, a type-discriminant column contains only a small number of distinct
typeids: at most, there can be only as many as there are types in the related type
hierarchy. The low cardinality of this column makes it a good candidate for a bitmap
index.

For example, the following statement creates a bitmap index on the type-discriminant
column underlying the substitutable contact column of table contacts. The
function SYS_TYPEID references the type-discriminant column:

Example 8–3 Create bitmap index on type-discriminant column

-- Requires Ex. 8-1
CREATE TABLE contacts (
 contact person_typ,
 contact_date DATE);
INSERT INTO contacts VALUES (
 person_typ (65,'Vrinda Mills', '1-650-555-0125'),'24 Jun 2003');
INSERT INTO contacts VALUES (
 person_typ (12, 'Bob Jones', '650-555-0130'),'24 Jun 2003');
INSERT INTO contacts VALUES (
 student_typ(51, 'Joe Lane', '1-650-555-0140', 12, 'HISTORY'),'24 Jun 2003');
INSERT INTO contacts VALUES (part_time_student_typ(52, 'Kim Patel',
'1-650-555-0135', 14, 'PHYSICS', 20),'24 Jun 2003');
CREATE BITMAP INDEX typeid_idx ON contacts (SYS_TYPEID(contact));

Indexing Subtype Attributes of a Substitutable Column
You can build an index on attributes for any types that can be stored in a substitutable
column. You can reference attributes of subtypes in the CREATE INDEX statement by

Type Evolution

8-6 Oracle Database Object-Relational Developer's Guide

filtering out types other than the desired subtype (and its subtypes) using the TREAT
function; you then use dot notation to specify the desired attribute.

For example, the following statement creates an index on the major attribute of all
students in the contacts table. The declared type of the contact column is
person_typ, of which student_typ is a subtype, so the column may contain
instances of person_typ, student_typ, and subtypes of either one:

Example 8–4 Create index on attribute of all students

-- Requires Ex.8-1- and 8-3
CREATE INDEX major1_idx ON contacts
 (TREAT(contact AS student_typ).major);

The student_typ type first defined the major attribute: the person_typ supertype
does not have it. Consequently, all the values in the hidden column for the major
attribute are values for persons of type student_typ or parttimestudent_typ (a
student_typ subtype). This means that the values of the hidden column are
identical to the values returned by the TREAT expression, major values for all
students, including student subtypes: both the hidden column and the TREAT
expression list majors for students and nulls for non-students. The system exploits this
fact and creates index major1_idx as an ordinary B-tree index on the hidden column.

Values in a hidden column are only identical to the values returned by the TREAT
expression just described if the type named as the target of the TREAT function
(student_typ) is the type that first defined the major attribute. If the target of the
TREAT function is a subtype that merely inherited the attribute, as in the following
example, the TREAT expression returns non-null major values for the subtype
(part-time students) but not for its supertype (other students).

CREATE INDEX major2_idx ON contacts
 (TREAT(contact AS part_time_student_typ).major);

Here, the values stored in the hidden column for major may be different from the
results of the TREAT expression. Consequently, an ordinary B-tree index cannot be
created on the underlying column. Therefore, the database treats the TREAT expression
like any other function-based expression and tries to create the index as a
function-based index on the result.

The following example, like the previous one, creates a function-based index on the
major attribute of part-time students, but in this case, the hidden column for major is
associated with a substitutable object table person_obj_table:

CREATE INDEX major3_idx ON person_obj_table p
 (TREAT(VALUE(p) AS part_time_student_typ).major);

Type Evolution
Type evolution is the process of changing a object type. You can make the following
changes to an object type:

■ Add and drop attributes

■ Add and drop methods

■ Modify a numeric attribute to increase its length, precision, or scale

■ Modify a varying length character attribute to increase its length

■ Change the FINAL and INSTANTIABLE properties of a type

Type Evolution

Advanced Topics for Oracle Objects 8-7

■ Modify limit and size of VARRAYs

■ Modify length, precision, and scale of collection elements

Changes to a type affect things that reference the type. For example, if you add a new
attribute to a type, data in a column of that type must be presented so as to include the
new attribute.

This section includes the following topics:

■ Type Evolution and Dependent Schema Objects

■ Options for Updating Data

■ Effects of Structural Changes to Types

■ Altering a Type by Adding a Nested Table Attribute

■ Validating a Type That Has Been Altered

■ If a Type Change Validation Fails

■ ALTER TYPE Statement for Type Evolution

■ ALTER TABLE Statement for Type Evolution

Type Evolution and Dependent Schema Objects
Dependent schema objects of a type are objects that directly or indirectly reference the
type and are affected by a change to it.

A type can have these kinds of dependent schema objects: tables; types or subtypes;
program units (PL/SQL blocks) such as procedures, functions, packages, and triggers;
indextypes; views (including object views); function-based indexes; and operators.

How a dependent schema object is affected by a change to a type depends on the
object and on the nature of the change.

■ Dependent program units, views, operators, and indextypes are marked invalid
when the type is modified. The next time one of these invalid schema objects is
referenced, it is revalidated using the new type definition. If the object recompiles
successfully, it becomes valid and can be used again.

■ Dependent function-based indexes may be dropped or disabled, depending on the
type change, and must be rebuilt.

■ Dependent tables have one or more internal columns added for each attribute
added to the type, depending on the attribute type. New attributes are added with
NULL values. For each dropped attribute, the columns associated with that
attribute are dropped. For each modified attribute, the length, precision, or scale of
its associated column is changed accordingly.

These changes mainly involve updating the metadata of the tables and can be
performed quickly. However, the data in those tables must be updated to the format of
the new type version as well, as discussed in "Options for Updating Data" on page 8-7.

Options for Updating Data
Depending on the amount of data, updating can be time-consuming, so the ALTER
TYPE command has options to let you choose whether to convert all dependent table
data immediately or to leave it in the old format to be converted piecemeal as it is
updated in the course of business.

Type Evolution

8-8 Oracle Database Object-Relational Developer's Guide

The CASCADE option for ALTER TYPE propagates a type change to dependent types
and tables. See "ALTER TYPE Statement for Type Evolution" on page 8-14. CASCADE
itself has the following options that let you choose whether or not to convert table data
to the new type format as part of the propagation:

■ INCLUDING TABLE DATA: converts the data (default)

■ NOT INCLUDING TABLE DATA : does not convert data

By default, the CASCADE option converts the data. In either case, table data is always
returned in the format of the latest type version. If the table data is stored in the format
of an earlier type version, the database converts the data to the format of the latest
version before returning it, even though the format in which the data is actually stored
is not changed until the data is rewritten.

You can retrieve the definition of the latest type from the system view USER_SOURCE.
You can view definitions of all versions of a type in the USER_TYPE_VERSIONS view.

Effects of Structural Changes to Types
Structural changes to a type affect dependent data and require the data to be
converted. This is not true for changes that are confined to method definitions or
behavior (implementation) of the type.

These possible changes to a type are structural:

■ Add or drop an attribute

■ Modify the length, precision, or scale of an attribute

■ Change the finality of a type from FINAL to NOT FINAL or the reverse

These changes result in new versions of the altered type and all its dependent types
and require the system to add, drop, or modify internal columns of dependent tables
as part of the process of converting to the new version.

When you make any of these kinds of changes to a type that has dependent types or
tables, the effects of propagating the change are not confined only to metadata but also
affect data storage arrangements and require data conversion.

Besides converting data, you may also need to make other changes. For example, if a
new attribute is added to a type, and the type body invokes the constructor of the
type, then each constructor in the type body must be modified to specify a value for
the new attribute. Similarly, if a new method is added, then the type body must be
replaced to add the implementation of the new method. The type body can be
modified by using the CREATE OR REPLACE TYPE BODY statement.

Altering a Type by Adding and Dropping Attributes
Example 8–5 illustrates how to make a simple change to person_typ by adding one
attribute and dropping another. The CASCADE keyword propagates the type change to
dependent types and tables, but the phrase NOT INCLUDING TABLE DATA prevents
conversion of the related data.

Example 8–5 Altering an Object Type by Adding and Dropping an Attribute

-- Drop person_typ and person_obj_table if they exist

See Also:

Oracle Database PL/SQL Language Reference for details about type
specification and body compilation

Type Evolution

Advanced Topics for Oracle Objects 8-9

CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20));
/
CREATE TABLE person_obj_table OF person_typ;

INSERT INTO person_obj_table
 VALUES (person_typ(12, 'Bob Jones', '650-555-0130'));

SELECT value(p) FROM person_obj_table p;

VALUE(P)(IDNO, NAME, PHONE)
--
PERSON_TYP(12, 'Bob Jones', '650-555-0130')

You can add the email attribute and drop the phone attribute as follows:

ALTER TYPE person_typ
 ADD ATTRIBUTE (email VARCHAR2(80)),
 DROP ATTRIBUTE phone CASCADE NOT INCLUDING TABLE DATA;

Then disconnect and reconnect to accommodate the type change:

connect oe/oe;
connect hr/hr;
ALTER SESSION SET PLSQL_WARNINGS = 'enable:all';
-- The data of table person_obj_table has not been converted yet, but
-- when the data is retrieved, Oracle returns the data based on
-- the latest type version. The new attribute is initialized to NULL.
SELECT value(p) FROM person_obj_table p;

VALUE(P)(IDNO, NAME, EMAIL)

PERSON_TYP(12, 'Bob Jones', NULL)

During SELECT statements, even though column data may be converted to the latest
type version, the converted data is not written back to the column. If you retrieve a
particular user-defined type column in a table often, consider converting that data to
the latest type version to eliminate redundant data conversions. Converting is
especially beneficial if the column contains VARRAY attributes which typically take
more time to convert than objects or nested table columns.

You can convert a column of data by issuing an UPDATE statement to set the column to
itself, as indicated in the following code snippet, which is unrelated to previous code.

UPDATE dept_tab SET emp_array_col = emp_array_col;

You can convert all columns in a table by using ALTER TABLE with the UPGRADE
INCLUDING DATA. For example:

ALTER TYPE person_typ ADD ATTRIBUTE (photo BLOB)
 CASCADE NOT INCLUDING TABLE DATA;
ALTER TABLE person_obj_table UPGRADE INCLUDING DATA;

The ALTER TABLE line converts only the table listed. The CASCADE option prevents
conversion of other tables or dependents.

Type Evolution

8-10 Oracle Database Object-Relational Developer's Guide

Altering a Type by Adding a Nested Table Attribute
This section describes the steps required to make a complex change to a type: the
addition of a nested table attribute to an object type that is included in a nested table.

Example 8–6 provides the initial schema which is altered by Example 8–7.

Example 8–6 Initial Schema

-- Drop existing person_typ, department_type, people_typ objects or tables
CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20));
/
-- creating a nested table type
CREATE TYPE people_typ AS TABLE OF person_typ;
/
CREATE TYPE department_typ AS OBJECT (
 manager person_typ,
 employee people_typ); // a nested table
/
CREATE TABLE department OF department_typ
 NESTED TABLE employee STORE AS employee_store_nt;

Example 8–7 starts by creating a new object tasks_typ and a nested table type to
hold it, tasks_nttab.

The following steps, both in Example 8–7, and in other programs, are necessary to add
the nested table tasks as an attribute to the object type person_typ, which is
already included in the nested table people_typ.

1. Issue an ALTER TYPE..INVALIDATE statement to alter the type person_typ.
This statement bypasses all type and table checks to save time and invalidates
dependent objects. You cannot access table data until it is validated.

The ALTER TYPE statement includes ADD ATTRIBUTE to add the nested table
tasks.

The UPGRADE.. STORE AS clause upgrades the affected nested table, and
specifies name of the new storage table.

Example 8–7 Altering an Object Type by Adding a Nested Table Attribute

-- Requires Ex. 8-6
CREATE TYPE tasks_typ AS OBJECT (
 priority VARCHAR2(2),
 description VARCHAR2(30));
/

CREATE TYPE tasks_nttab AS TABLE OF tasks_typ;
/

ALTER TYPE person_typ ADD ATTRIBUTE tasks tasks_nttab
 INVALIDATE;

-- Propagate the change to employee_store_nt
-- Specify a storage name for the new nested table
ALTER TABLE employee_store_nt
 UPGRADE NESTED TABLE tasks STORE AS tasks_nt;

Type Evolution

Advanced Topics for Oracle Objects 8-11

2. Use CREATE OR REPLACE TYPE BODY for person_typ to update the
corresponding type body to make it current with the new type definition, if
necessary.

3. Upgrade the dependent tables to the latest type version and convert the data in the
tables. This validates the table and allow for data access again.

ALTER TABLE department UPGRADE INCLUDING DATA;

4. Alter dependent PL/SQL program units as needed to take account of changes to
the type.

5. Use OTT or JPublisher to generate new header files for applications, depending on
whether the application is written in C or Java.

Adding a new attribute to a supertype also increases the number of attributes in
all its subtypes because these inherit the new attribute. Inherited attributes always
precede declared (locally defined) attributes, so adding a new attribute to a
supertype causes the ordinal position of all declared attributes of any subtype to
be incremented by one recursively. The mappings of the altered type must be
updated to include the new attributes. Oracle Type Translator (OTT) and
JPublisher do this. If you use another tool, you must be sure that the type headers
are properly synchronized with the type definition in the server; otherwise,
unpredictable behavior may result.

6. Modify application code as needed and rebuild the application.

Validating a Type That Has Been Altered
When the system executes an ALTER TYPE statement, it first validates the requested
type change syntactically and semantically to make sure it is legal. The system
performs the same validations as for a CREATE TYPE statement plus some additional
ones. If the new spec of the target type or any of its dependent types fails the type
validations, the ALTER TYPE statement aborts. No new type version is created, and all
dependent objects remain unchanged.

If dependent tables exist, further checking ensures that restrictions relating to the
tables and indexes are observed. For example, it ensures that an attribute being
dropped is not used as a partitioning key. Again, if the ALTER TYPE statement fails
the check of table-related restrictions, then the type change is aborted, and no new
version of the type is created.

When a single ALTER TYPE statement adds multiple attributes, it is done in the order
specified. Multiple type changes can be specified in the same ALTER TYPE statement,
but no attribute name or method signature can be specified more than once in the
statement. For example, adding and modifying the same attribute in a single statement
is not allowed.

The following sections contain other notes on type changes including:

■ Dropping an Attribute

■ Modifying the Length, Precision, or Scale of an Attribute Type

■ Dropping a Method

■ Modifying the INSTANTIABLE Property

Dropping an Attribute
■ Dropping all attributes from a root type is not allowed. Instead, you must drop the

type. Because a subtype inherits all the attributes from its supertype, dropping all

Type Evolution

8-12 Oracle Database Object-Relational Developer's Guide

the attributes from a subtype does not reduce its attribute count to zero; therefore,
dropping all attributes declared locally in a subtype is allowed.

■ Only an attribute declared locally in the target type can be dropped. You cannot
drop an inherited attribute from a subtype. Instead, drop the attribute from the
type where it is locally declared.

■ Dropping an attribute which is part of a table partitioning or sub-partitioning key
in a table is not allowed.

■ Dropping an attribute of a primary key OID of an object table or an
index-organized table (IOT) is not allowed.

■ When an attribute is dropped, the column corresponding to the dropped attribute
is dropped.

■ When an attribute is dropped, any indexes, statistics, constraints, and referential
integrity constraints that reference it are removed.

Modifying the Length, Precision, or Scale of an Attribute Type
■ You are not allowed to expand the length of an attribute referenced in a

function-based index, clustered key or domain index on a dependent table.

■ You are not allowed to decrease the length, precision, or scale of an attribute.

Dropping a Method
■ You can only drop a method from the type in which the method is defined (or

redefined): You cannot drop an inherited method from a subtype, and you cannot
drop an redefined method from a supertype.

■ If a method is not redefined, dropping it using the CASCADE option removes the
method from the target type and all subtypes. However, if a method is redefined
in a subtype, the CASCADE will fail and roll back. For the CASCADE to succeed, you
must first drop each redefined method from the subtype that defines it and then
drop the method from the supertype.

You can consult the USER_DEPENDENCIES table to find all the schema objects,
including types, that depend on a given type. You can also run the DBMS_
UTILITY.GET_DEPENDENCY utility to find the dependencies of a type.

■ You can use the INVALIDATE option to drop a method that has been redefined,
but the redefined versions in the subtypes must still be dropped manually. The
subtypes will remain in an invalid state until they are explicitly altered to drop the
redefined versions. Until then, an attempt to recompile the subtypes for
revalidation will produce the error Method does not override.

Unlike CASCADE, INVALIDATE bypasses all the type and table checks and simply
invalidates all schema objects dependent on the type. The objects are revalidated
the next time they are accessed. This option is faster than using CASCADE, but you
must be certain that no problems occur when revalidating dependent types and
tables. Table data cannot be accessed while a table is invalid; if a table cannot be
validated, its data remains inaccessible.

See "If a Type Change Validation Fails" on page 8-13.

Modifying the INSTANTIABLE Property
■ Altering an object type from INSTANTIABLE to NOT INSTANTIABLE is allowed

only if the type has no table dependents.

Type Evolution

Advanced Topics for Oracle Objects 8-13

■ Altering an object type from NOT INSTANTIABLE to INSTANTIABLE is allowed
anytime. This change does not affect tables.

Modifying the FINAL Property
■ Altering an object type from NOT FINAL to FINAL is only allowed if the target

type has no subtypes.

■ When you alter an object type from FINAL to NOT FINAL or vice versa, you must
use CASCADE to convert data in dependent columns and tables immediately. You
may not use the CASCADE option NOT INCLUDING TABLE DATA to defer
converting data.

■ From NOT FINAL to FINAL, you must use CASCADE INCLUDING TABLE
DATA.

■ From FINAL to NOT FINAL, you may use either CASCADE INCLUDING
TABLE DATA or CASCADE CONVERT TO SUBSTITUTABLE.

When you alter a type from FINAL to NOT FINAL, select the CASCADE option
based on whether or not you want to insert new subtypes of the altered types
into existing columns and tables.

By default, altering a type from FINAL to NOT FINAL enables you to create new
substitutable tables and columns of that type, but it does not automatically make
existing columns (or object tables) of that type substitutable. In fact, just the
opposite happens: existing columns and tables of the type are marked NOT
SUBSTITUTABLE AT ALL LEVELS. If any embedded attribute of these columns is
substitutable, an error is generated. New subtypes of the altered type cannot be
inserted into these preexisting columns and tables.

To alter an object type to NOT FINAL in a way that makes existing columns and
tables of the type substitutable (assuming that they are not marked NOT
SUBSTITUTABLE), use the CASCADE option CONVERT TO SUBSTITUTABLE.

Example 8–8 shows the use of CASCADE with the option CONVERT TO
SUBSTITUTABLE:

Example 8–8 Converting a Type from FINAL to NOT FINAL

CREATE TYPE shape AS OBJECT (
 name VARCHAR2(30),
 area NUMBER)
 FINAL;
/
ALTER TYPE shape NOT FINAL CASCADE CONVERT TO SUBSTITUTABLE;

This CASCADE option marks each existing column as SUBSTITUTABLE AT ALL
LEVELS and causes a new, hidden column to be added for the TypeId of instances
stored in the column. The column can then store subtype instances of the altered
type.

If a Type Change Validation Fails
The INVALIDATE option of the ALTER TYPE statement lets you alter a type without
propagating the type change to dependent objects. In this case, the system does not
validate the dependent types and tables, that is, does not ensure that all the
ramifications of the type change are legal. Instead, the system marks all dependent
schema objects invalid. These objects, including types and tables, are revalidated the

Type Evolution

8-14 Oracle Database Object-Relational Developer's Guide

next time they are referenced. If a type cannot be revalidated, it remains invalid, and
any tables referencing it become inaccessible until the problem is corrected.

A table may fail validation for reasons such as: the addition of a new attribute to a type
increased the number of columns in the table beyond the maximum of 1000, or an
attribute used as a partitioning or clustering key of a table was dropped from a type.

To force a revalidation of a type, users can issue the ALTER TYPE COMPILE
statement. To force a revalidation of an invalid table, users can issue the ALTER
TABLE UPGRADE statement and specify whether or not the data is to be converted to
the latest type version.

If a table cannot be converted to the latest type version, then INSERT, UPDATE and
DELETE statements on the table are not allowed, and the table data becomes
inaccessible. The following DDLs can be executed on the table, but all other statements
which reference an invalid table are not allowed until the table is successfully
validated:

■ DROP TABLE

■ TRUNCATE TABLE

All PL/SQL programs containing variables defined using %ROWTYPE of a table or
%TYPE of a column or attribute from a table are compiled based on the latest type
version. If the table fails the revalidation, then compiling any program units that
reference that table also fails.

ALTER TYPE Statement for Type Evolution
Table 8–1 lists some of the important options in the ALTER TYPE and ALTER
TYPE...CASCADE statements for altering the attribute or method definition of a type.

Note: In a system-triggered table validation, the table is referenced,
table data is always updated to the latest type version: you do not
have the option to postpone conversion of the data.

Table 8–1 ALTER TYPE Options for Type Evolution

Option Description

INVALIDATE Invalidates all dependent objects. Use this option to bypass all
the type and table checks, and save time.

Use this option only if you are certain that problems will not be
encountered revalidating dependent types and tables. Table data
cannot be accessed again until it is validated; if it cannot be
validated, it remains inaccessible.

CASCADE Propagates the type change to dependent types and tables. The
statement aborts if an error is found in dependent types or tables
unless the FORCE option is specified.

If CASCADE is specified without other options, then the
INCLUDING TABLE DATA option for CASCADE is implied, and
the database converts all table data to the latest type version.

Type Evolution

Advanced Topics for Oracle Objects 8-15

ALTER TABLE Statement for Type Evolution
You can use ALTER TABLE to convert table data to the latest version of referenced
types. For an example, see "Altering a Type by Adding a Nested Table Attribute" on
page 8-10. See Table 8–1 on page 8-14 for a discussion of the INCLUDING DATA option.

INCLUDING TABLE
DATA (Option of
CASCADE)

Converts data stored in all user-defined columns to the most
recent version of the column type.

For each new attribute added to the column type, a new
attribute is added to the data and is initialized to NULL. For each
attribute dropped from the referenced type, the corresponding
attribute data is removed from the table. All tablespaces
containing the table data must be in read-write mode; otherwise,
the statement will not succeed.

NOT INCLUDING
TABLE DATA (Option of
CASCADE)

Leaves column data as is, does not change type version. If an
attribute is dropped from a type referenced by a table, the
corresponding column of the dropped attribute is not removed
from the table. However, the metadata of the column is marked
unused. If the dropped attribute is stored out-of-line (for
example, VARRAY, LOB, or nested table attribute), the out-of-line
data is not removed. (Unused columns can be removed
afterward by using an ALTER TABLE DROP UNUSED COLUMNS
statement.)

This option is useful when you have many large tables and may
run out of rollback segments if you convert them all in one
transaction. This option enables you to convert the data of each
dependent table later in a separate transaction (using an ALTER
TABLE UPGRADE INCLUDING DATA statement).

Specifying this option speeds up the table upgrade because the
table data remains in the format of the old type version.
However, selecting data from this table requires converting the
images stored in the column to the latest type version. This is
likely to affect performance during subsequent SELECT
statements.

Because this option only requires updating the table metadata, it
does not require that all tablespaces be on-line in read/write
mode for the statement to succeed.

FORCE (Option of
CASCADE)

Forces the system to ignore errors from dependent tables and
indexes. Errors are logged in a specified exception table so that
they can be queried afterward. Use this option with caution
because dependent tables can become inaccessible if some table
errors occur.

CONVERT TO
SUBSTITUTABLE
(Option of CASCADE)

For use when altering a type from FINAL to NOT FINAL:
Converts data stored in all user-defined columns to the most
recent version of the column type and then marks these existing
columns and object tables of the type SUBSTITUTABLE AT ALL
LEVELS so that they can store any newly created subtypes of the
type.

If the type is altered to NOT FINAL without specifying this
option, existing columns and tables of the type are marked NOT
SUBSTITUTABLE AT ALL LEVELS, and new subtypes of the
type cannot be stored in them. You can only store these subtypes
in columns and tables created after the type was altered.

See Also: Oracle Database SQL Language Reference for further
information about ALTER TYPE options

Table 8–1 (Cont.) ALTER TYPE Options for Type Evolution

Option Description

System-Defined and User-Defined Constructors

8-16 Oracle Database Object-Relational Developer's Guide

System-Defined and User-Defined Constructors
This section discusses various aspects of using system-defined constructors, also
known as attribute-value constructors, and user-defined constructors.

This section includes these topics:

■ The Attribute-Value Constructor

■ Constructors and Type Evolution

■ Advantages of User-Defined Constructors

■ Defining and Implementing User-Defined Constructors

■ Overloading and Hiding Constructors

■ Calling User-Defined Constructors

■ Constructors for SQLJ Object Types

The Attribute-Value Constructor
The system-defined constructor, also known as the attribute-value constructor,
requires you to pass the constructor a value for each attribute of the type. The
constructor then sets the attributes of the new object instance to those values, as shown
in Example 8–9.

Example 8–9 Setting the attribute-value with the Constructor

CREATE TYPE shape AS OBJECT (
 name VARCHAR2(30),
 area NUMBER);
/
CREATE TABLE building_blocks of shape;

-- attribute-value constructor: Sets instance attributes to the specified values
INSERT INTO building_blocks
 VALUES (
 NEW shape('my_shape', 4));

The keyword NEW preceding a call to a constructor is optional but recommended.

Constructors and Type Evolution
The attribute-value constructor saves you the trouble of defining your own
constructors for a type. However, you must supply a value for every attribute declared
in the type or the constructor call fails to compile.

This requirement can create a problem if you evolve the type later on, especially
because the attribute-value constructor is implicit and not visible in the code, unlike a
user-defined constructor. When you change the attributes of a type, the attribute-value
constructor of the type changes, too. If you add an attribute, the updated
attribute-value constructor expects a value for the new attribute; otherwise, any
attribute-value constructor calls in your existing code fail.

See "Type Evolution" on page 8-6.

See Also: Oracle Database SQL Language Reference for information
about ALTER TABLE options

System-Defined and User-Defined Constructors

Advanced Topics for Oracle Objects 8-17

Advantages of User-Defined Constructors
User-defined constructors do not need to explicitly set a value for every attribute of a
type, unlike attribute-value constructors. A user-defined constructor can have any
number of arguments, of any type, and these do not need to map directly to type
attributes. When you define a constructor, you can initialize the attributes to any
appropriate values. For any attributes which you do not supply values, the system
initialized to NULL.

If you evolve a type—for example, by adding an attribute—calls to user-defined
constructors for the type do not need to be changed. User-defined constructors are not
automatically modified when the type evolves, so their signatures remain the same.
You may, however, need to change the definition of the constructor if you do not want
the new attribute to be initialized to NULL.

Defining and Implementing User-Defined Constructors
You define user-defined constructors in the type body, like an ordinary method. You
introduce the declaration and the definition with the phrase CONSTRUCTOR
FUNCTION and end with the clause RETURN SELF AS RESULT.

A constructor for a type must have the same name as the type. Example 8–10 defines
two constructor functions for the shape type. As the example shows, you can
overload user-defined constructors by defining multiple versions with different
signatures.

Example 8–10 Defining and Implementing User-Defined Constructors

CREATE TYPE shape AS OBJECT (
 name VARCHAR2(30),
 area NUMBER,
 CONSTRUCTOR FUNCTION shape(SELF IN OUT NOCOPY shape, name VARCHAR2)
 RETURN SELF AS RESULT,
 CONSTRUCTOR FUNCTION shape(SELF IN OUT NOCOPY shape, name VARCHAR2,
 area NUMBER) RETURN SELF AS RESULT
) NOT FINAL;
/

CREATE TYPE BODY shape AS
 CONSTRUCTOR FUNCTION shape(SELF IN OUT NOCOPY shape, name VARCHAR2)
 RETURN SELF AS RESULT IS
 BEGIN
 SELF.name := name;
 SELF.area := 0;
 RETURN;
 END;
 CONSTRUCTOR FUNCTION shape(SELF IN OUT NOCOPY shape, name VARCHAR2,
 area NUMBER) RETURN SELF AS RESULT IS
 BEGIN
 SELF.name := name;
 SELF.area := area;
 RETURN;
 END;
END;
/

A user-defined constructor has an implicit first parameter SELF. Specifying this
parameter in the declaration of a user-defined constructor is optional. If you do specify
it, you must declare its mode to be IN OUT.

System-Defined and User-Defined Constructors

8-18 Oracle Database Object-Relational Developer's Guide

The required clause RETURN SELF AS RESULT ensures that the most specific type of
the instance being returned is the same as the most specific type of the SELF
argument. In the case of constructors, this is the type for which the constructor is
defined. For example, if the most specific type of the SELF argument on a call to the
shape constructor is shape, then this clause ensures that the shape constructor
returns an instance of shape (not an instance of a subtype of shape).

When a constructor function is called, the system initializes the attributes of the SELF
argument to NULL. Names of attributes subsequently initialized in the function body
may be qualified with SELF, such as SELF.name in Example 8–10, to distinguish them
from the names of the arguments of the constructor function, if these are the same. If
the argument names are different, this qualification is not necessary.

The function body must include an explicit return; as shown. The return keyword
must not be followed by a return expression. The system automatically returns the
newly constructed SELF instance.

A user-defined constructor may be implemented in PL/SQL, C, or Java.

Overloading and Hiding Constructors
You can overload user-defined constructors, like other type methods.

User-defined constructors are not inherited, so a user-defined constructor defined in a
supertype cannot be hidden in a subtype. However, a user-defined constructor does
hide, and thus supersede, the attribute-value constructor for its type if the signature of
the user-defined constructor exactly matches the signature of the attribute-value
constructor. For the signatures to match, the names and types of the parameters (after
the implicit SELF parameter) of the user-defined constructor must be the same as the
names and types of the attributes of the type. The mode of the parameters (after the
implicit SELF parameter) of the user-defined constructor must be IN.

If an attribute-value constructor is not hidden by a user-defined constructor that has
the same name and signature, the attribute-value constructor can still be called.

Note that, if you evolve a type—for example, by adding an attribute—the signature of
the attribute-value constructor of the type changes accordingly. This can cause a
formerly hidden attribute-value constructor to become usable again.

Calling User-Defined Constructors
You call a user-defined constructor like any other function and you can use it
anywhere you can use an ordinary function.

The SELF argument is passed in implicitly and may not be passed in explicitly. In
other words, usages like the following are not allowed:

NEW constructor(instance, argument_list)

A user-defined constructor cannot occur in the DEFAULT clause of a CREATE or ALTER
TABLE statement, but an attribute-value constructor can. The arguments to the
attribute-value constructor must not contain references to PL/SQL functions or to
other columns, including the pseudocolumns LEVEL, PRIOR, and ROWNUM, or to date
constants that are not fully specified. The same is true for check constraint expressions:
an attribute-value constructor can be used as part of check constraint expressions
while creating or altering a table, but a user-defined constructor cannot.

Parentheses are required in SQL even for constructor calls that have no arguments. In
PL/SQL, parentheses are optional when invoking a zero-argument constructor. They
do, however, make it more obvious that the constructor call is a function call. The

System-Defined and User-Defined Constructors

Advanced Topics for Oracle Objects 8-19

following PL/SQL example omits parentheses in the constructor call to create a new
shape:

shape s := NEW my_schema.shape;

The NEW keyword and the schema name are optional.

Example 8–11 creates a subtype under the type created in Example 8–10 and shows
examples for calling the user-defined constructors.

Example 8–11 Calling User-Defined Constructors

-- Requires Ex. 8-10
CREATE TYPE rectangle UNDER shape (
 len NUMBER,
 wth NUMBER,
 CONSTRUCTOR FUNCTION rectangle(SELF IN OUT NOCOPY rectangle,
 name VARCHAR2, len NUMBER, wth NUMBER) RETURN SELF as RESULT,
 CONSTRUCTOR FUNCTION rectangle(SELF IN OUT NOCOPY rectangle,
 name VARCHAR2, side NUMBER) RETURN SELF as RESULT);
/
SHOW ERRORS
CREATE TYPE BODY rectangle IS
 CONSTRUCTOR FUNCTION rectangle(SELF IN OUT NOCOPY rectangle,
 name VARCHAR2, len NUMBER, wth NUMBER) RETURN SELF AS RESULT IS
 BEGIN
 SELF.name := name;
 SELF.area := len*wth;
 SELF.len := len;
 SELF.wth := wth;
 RETURN ;
 END;
 CONSTRUCTOR FUNCTION rectangle(SELF IN OUT NOCOPY rectangle,
 name VARCHAR2, side NUMBER) RETURN SELF AS RESULT IS
 BEGIN
 SELF.name := name;
 SELF.area := side * side;
 SELF.len := side;
 SELF.wth := side;
 RETURN ;
 END;
END;
/

CREATE TABLE shape_table OF shape;
INSERT INTO shape_table VALUES(shape('shape1'));
INSERT INTO shape_table VALUES(shape('shape2', 20));
INSERT INTO shape_table VALUES(rectangle('rectangle', 2, 5));
INSERT INTO shape_table VALUES(rectangle('quadrangle', 12, 3));
INSERT INTO shape_table VALUES(rectangle('square', 12));

The following query selects the rows in the shape_table:

SELECT VALUE(s) FROM shape_table s;

VALUE(S)(NAME, AREA)

SHAPE('shape1', 0)
SHAPE('shape2', 20)
RECTANGLE('rectangle', 10, 2, 5)
RECTANGLE('quadrangle', 36, 12, 3)

Transient and Generic Types

8-20 Oracle Database Object-Relational Developer's Guide

RECTANGLE('square', 144, 12, 12)

The following PL/SQL code calls the constructor:

s shape := NEW shape('void');

Constructors for SQLJ Object Types
A SQLJ object type is a SQL object type mapped to a Java class. A SQLJ object type has
an attribute-value constructor. It can also have user-defined constructors that are
mapped to constructors in the referenced Java class.

Example 8–12 Creating a SQLJ Object

CREATE TYPE address AS OBJECT
 EXTERNAL NAME 'university.address' LANGUAGE JAVA
 USING SQLData(
 street VARCHAR2(100) EXTERNAL NAME 'street',
 city VARCHAR2(50) EXTERNAL NAME 'city',
 state VARCHAR2(50) EXTERNAL NAME 'state',
 zipcode NUMBER EXTERNAL NAME 'zipcode',
 CONSTRUCTOR FUNCTION address (SELF IN OUT NOCOPY address, street VARCHAR2,
 city VARCHAR2, state VARCHAR2, zipcode NUMBER)
 RETURN SELF AS RESULT AS LANGUAGE JAVA
 NAME 'university.address (java.lang.String, java.lang.String,
 java.lang.String, int) return address');
/

A SQLJ type of a serialized representation can have only a user-defined constructor.
The internal representation of an object of SQLJ type is opaque to SQL, so an
attribute-value constructor is not possible for a SQLJ type.

Transient and Generic Types
Oracle database has three special SQL data types that enable you to dynamically
encapsulate and access type descriptions, data instances, and sets of data instances of
any other SQL type, including object and collection types. You can also use these three
special types to create anonymous types, including anonymous collection types.

The three SQL types are implemented as opaque types. In other words, the internal
structure of these types is not known to the database; their data can be queried only by
implementing functions (typically 3GL routines) for the purpose. Oracle database
provides both an OCI and a PL/SQL API for implementing such functions.

The three generic SQL types are described in Table 8–2.

Table 8–2 Generic SQL Types

Type Description

SYS.ANYTYPE A type description type. A SYS.ANYTYPE can contain a type
description of any SQL type, named or unnamed, including
object types and collection types.

An ANYTYPE can contain a type description of a persistent type,
but an ANYTYPE itself is transient: in other words, the value in
an ANYTYPE itself is not automatically stored in the database. To
create a persistent type, use a CREATE TYPE statement from
SQL.

Transient and Generic Types

Advanced Topics for Oracle Objects 8-21

Each of these three types can be used with any built-in type native to the database as
well as with object types and collection types, both named and unnamed. The types
provide a generic way to work dynamically with type descriptions, lone instances, and
sets of instances of other types. Using the APIs, you can create a transient ANYTYPE
description of any kind of type. Similarly, you can create or convert (cast) a data value
of any SQL type to an ANYDATA and can convert an ANYDATA (back) to a SQL type.
And similarly again with sets of values and ANYDATASET.

The generic types simplify working with stored procedures. You can use the generic
types to encapsulate descriptions and data of standard types and pass the
encapsulated information into parameters of the generic types. In the body of the
procedure, you can detail how to handle the encapsulated data and type descriptions
of whatever type.

You can also store encapsulated data of a variety of underlying types in one table
column of type ANYDATA or ANYDATASET. For example, you can use ANYDATA with
Advanced Queuing to model queues of heterogeneous types of data. You can query
the data of the underlying data types like any other data.

Example 8–13 defines and executes a PL/SQL procedure that uses methods built into
SYS.ANYDATA to access information about data stored in a SYS.ANYDATA table
column.

Example 8–13 Using SYS.ANYDATA

CREATE OR REPLACE TYPE dogowner AS OBJECT (
 ownerno NUMBER, ownername VARCHAR2(10));
/
CREATE OR REPLACE TYPE dog AS OBJECT (
 breed VARCHAR2(10), dogname VARCHAR2(10));
/
CREATE TABLE mytab (id NUMBER, data SYS.ANYDATA);
INSERT INTO mytab VALUES (1, SYS.ANYDATA.ConvertNumber (5));
INSERT INTO mytab VALUES (2, SYS.ANYDATA.ConvertObject (
 dogowner (5555, 'John')));
commit;

CREATE OR REPLACE procedure P IS
 CURSOR cur IS SELECT id, data FROM mytab;

SYS.ANYDATA A self-describing data instance type. A SYS.ANYDATA contains
an instance of a given type, with data, plus a description of the
type. In this sense, a SYS.ANYDATA is self-describing. An
ANYDATA can be persistently stored in the database.

The following cannot be stored in an ANYDATA column:

■ Another opaque type such as ANYDATA or XMLTYPE

■ LOB types (BLOB/CLOB/NCLOB)

■ VARRAY types with maximum size greater than 4K

■ ADTs that contain any of the above types

SYS.ANYDATASET A self-describing data set type. A SYS.ANYDATASET type
contains a description of a given type plus a set of data instances
of that type. An ANYDATASET can be persistently stored in the
database.

Table 8–2 (Cont.) Generic SQL Types

Type Description

Transient and Generic Types

8-22 Oracle Database Object-Relational Developer's Guide

 v_id mytab.id%TYPE;
 v_data mytab.data%TYPE;
 v_type SYS.ANYTYPE;
 v_typecode PLS_INTEGER;
 v_typename VARCHAR2(60);
 v_dummy PLS_INTEGER;
 v_n NUMBER;
 v_dogowner dogowner;
 non_null_anytype_for_NUMBER exception;
 unknown_typename exception;

BEGIN
 OPEN cur;
 LOOP
 FETCH cur INTO v_id, v_data;
 EXIT WHEN cur%NOTFOUND;
 v_typecode := v_data.GetType (v_type /* OUT */);
 CASE v_typecode
 WHEN Dbms_Types.Typecode_NUMBER THEN
 IF v_type IS NOT NULL
 THEN RAISE non_null_anytype_for_NUMBER; END IF;
 v_dummy := v_data.GetNUMBER (v_n /* OUT */);
 Dbms_Output.Put_Line (
 To_Char(v_id) || ': NUMBER = ' || To_Char(v_n));
 WHEN Dbms_Types.Typecode_Object THEN
 v_typename := v_data.GetTypeName();
 IF v_typename NOT IN ('HR.DOGOWNER')
 THEN RAISE unknown_typename; END IF;
 v_dummy := v_data.GetObject (v_dogowner /* OUT */);
 Dbms_Output.Put_Line (
 To_Char(v_id) || ': user-defined type = ' || v_typename ||
 '(' || v_dogowner.ownerno || ', ' || v_dogowner.ownername || ')');
 END CASE;
 END LOOP;
 CLOSE cur;

EXCEPTION
 WHEN non_null_anytype_for_NUMBER THEN
 RAISE_Application_Error (-20000,
 'Paradox: the return AnyType instance FROM GetType ' ||
 'should be NULL for all but user-defined types');
 WHEN unknown_typename THEN
 RAISE_Application_Error (-20000,
 'Unknown user-defined type ' || v_typename ||
 ' - program written to handle only HR.DOGOWNER');
END;
/

SELECT t.data.gettypename() FROM mytab t;
SET SERVEROUTPUT ON;
EXEC P;

The query and the procedure P in the preceding code sample produce output like the
following:

T.DATA.GETTYPENAME()

SYS.NUMBER
HR.DOGOWNER

How Locators Improve the Performance of Nested Tables

Advanced Topics for Oracle Objects 8-23

1: NUMBER = 5
2: user-defined type = HR.DOGOWNER(5555, John)

Corresponding to the three generic SQL types are three OCI types that model them.
Each has a set of functions for creating and accessing the respective type:

■ OCIType: corresponds to SYS.ANYTYPE

■ OCIAnyData: corresponds to SYS.ANYDATA

■ OCIAnyDataSet: corresponds to SYS.ANYDATASET

User-Defined Aggregate Functions
Oracle database provides a number of pre-defined aggregate functions such as MAX,
MIN, SUM for performing operations on a set of records. These pre-defined aggregate
functions can be used only with scalar data. However, you can create your own
custom implementations of these functions, or define entirely new aggregate
functions, to use with complex data—for example, with multimedia data stored using
object types, opaque types, and LOBs.

User-defined aggregate functions are used in SQL DML statements just like the Oracle
database built-in aggregates. Once such functions are registered with the server, the
database simply invokes the aggregation routines that you supplied instead of the
native ones.

User-defined aggregates can be used with scalar data as well. For example, it may be
worthwhile to implement special aggregate functions for working with complex
statistical data associated with financial or scientific applications.

User-defined aggregates are a feature of the Extensibility Framework. You implement
them using ODCIAggregate interface routines.

How Locators Improve the Performance of Nested Tables
You can use nested table locators to improve performance when retrieving data.

Collection types do not map directly to a native type or structure in languages such as
C++ and Java. An application using those languages must access the contents of a
collection through Oracle database interfaces, such as OCI.

Generally, when the client accesses a nested table explicitly or implicitly (by fetching
the containing object), the database returns the entire collection value to the client
process. For performance reasons, a client may wish to delay or avoid retrieving the

See Also:

■ Oracle Call Interface Programmer's Guide for the OCIType,
OCIAnyData, and OCIAnyDataSet APIs and details on how
to use them.

■ Oracle Database PL/SQL Packages and Types Reference for
information about the interfaces to the ANYTYPE, ANYDATA,
and ANYDATASET types and about the DBMS_TYPES package,
which defines constants for built-in and user-defined types, for
use with ANYTYPE, ANYDATA, and ANYDATASET.

See Also: Oracle Database Data Cartridge Developer's Guide for
information on using the ODCIAggregate interface routines to
implement user-defined aggregate functions

How Locators Improve the Performance of Nested Tables

8-24 Oracle Database Object-Relational Developer's Guide

entire contents of the collection. Oracle database handles this case for you by using a
locator instead of the actual nested table value. When you really access the contents of
the collection, they are automatically transferred to the client.

A nested table locator is like a handle to the collection value. It attempts to preserve
the value or copy semantics of the nested table by containing the database snapshot as
of its time of retrieval. The snapshot helps the database retrieve the correct
instantiation of the nested table value at a later time when the collection elements are
fetched using the locator. The locator is scoped to a session and cannot be used across
sessions. Because database snapshots are used, it is possible to get a snapshot too
old error if there is a high update rate on the nested table. Unlike a LOB locator, the
nested table locator is truly a locator and cannot be used to modify the collection
instance.

See Also: "Nested Table Locators" on page 9-13 for more specific
information

9

Design Considerations for Oracle Objects 9-1

9 Design Considerations for Oracle Objects

This chapter explains the implementation and performance characteristics of the
Oracle object-relational model. Use this information to map a logical data model into
an Oracle physical implementation, and when developing applications that use
object-oriented features.

This chapter covers the following topics:

■ General Storage Considerations for Objects

■ Performance of Object Comparisons

■ Design Considerations for REFs

■ Design Considerations for Collections

■ Design Considerations for Methods

■ Writing Reusable Code Using Invoker Rights

■ Using Roles with Invoker's Rights Subprograms

■ Replicating Object Tables and Columns

■ Constraints on Objects

■ Considerations Related to Type Evolution

■ Parallel Queries with Oracle Objects

■ Design Consideration Tips and Techniques

General Storage Considerations for Objects
This section discusses general storage considerations for various object types.

This section contains the following topics:

■ Storing Objects as Columns or Rows

■ Storage Considerations for Object Identifiers (OIDs)

Storing Objects as Columns or Rows
You can store objects in relational tables as column objects or in object tables as row
objects. Those objects that have meaning outside of the relational database they reside
in, should be made referenceable as row objects in an object table. Otherwise, they
should be stored as column objects in a relational table.

See "How Objects are Stored in Tables" on page 1-6 for an introduction to table storage.

General Storage Considerations for Objects

9-2 Oracle Database Object-Relational Developer's Guide

This section describes the following topics:

■ Column Object Storage in Relational Tables

■ Row Object Storage in Object Tables

Column Object Storage in Relational Tables
The storage of a column object is similar to the storage of an equivalent set of scalar
columns that collectively make up the object. The difference is the additional overhead
of maintaining the atomic null values of any noncollection columns objects and their
embedded object attributes. These values, called null indicators (or sometimes, null
images), specify for every column object, whether or not the column object is null and
whether or not each of its embedded object attributes is null.

Note that null indicators do not specify whether the scalar attributes of a column
object are null. Oracle uses a different method to determine whether scalar attributes
are null.

Consider a table that holds the identification number, name, address, and phone
numbers of people within an organization. You can create three different object types
to hold the name, address, and phone numbers and an object employee_objtyp that
contains the name and address objects. Because each person may have more than one
phone number, you need to create a nested table type based on the phone number
object type

First, enter the SQL statements in Example 9–1 to create the four object types and a
table for phone number objects.

Example 9–1 Creating Object Types for Columns in a Relational Table

CREATE TYPE name_objtyp AS OBJECT (
 first VARCHAR2(15),
 middle VARCHAR2(15),
 last VARCHAR2(15));
/
CREATE TYPE address_objtyp AS OBJECT (
 street VARCHAR2(200),
 city VARCHAR2(200),
 state VARCHAR2(2),
 zipcode VARCHAR2(20));
NOT FINAL;
/
CREATE TYPE phone_objtyp AS OBJECT (
 location VARCHAR2(15),
 num VARCHAR2(14));
/

CREATE TYPE employee_objtyp AS OBJECT (
 name name_objtyp;
 address address_objtyp;
/

CREATE TYPE phone_ntabtyp AS TABLE OF phone_objtyp;
/

See Also: "Design Considerations for Nested Tables" on page 9-10
for more information about nested tables

General Storage Considerations for Objects

Design Considerations for Oracle Objects 9-3

Next, create a table to hold the information about the people in the organization with
the SQL statement in Example 9–2. This statement also creates an id for people in the
organization.

Example 9–2 Creating a Table with Column Objects

CREATE TABLE people_reltab (
 id NUMBER(4) CONSTRAINT pk_people_reltab PRIMARY KEY,
 employee employee_objtyp
 phones_ntab phone_ntabtyp)
 NESTED TABLE phones_ntab STORE AS phone_store_ntab;

Figure 9–1 Representation of the people_reltab Relational Table

The people_reltab table has two column objects: employee and phones_ntab.
The phones_ntab column object is a nested table, a collection type of column object.

The storage for each object in the people_reltab table is that of the attributes of the
object plus overhead for the null indicator.

The null indicators for an object and its embedded object attributes occupy one bit
each. Thus, an object with n embedded object attributes (including objects at all levels
of nesting) has a storage overhead of CEIL(n/8) bytes. There is one null indicator
column for each noncollection column object, name_obj and address_obj. The null
indicator column length is one byte, as one bit represents the object itself, which
translates to CEIL(1/8) or 1.

Since the null indicator is one byte in size, the overhead of null information for each
row of the people_reltab table is two bytes, one for each object column.

Every noncollection object has a null indicator column, whether or not the object is
FINAL. The columns in these examples are FINAL.

See Also: Oracle Database SQL Language Reference for more
information about CEIL

General Storage Considerations for Objects

9-4 Oracle Database Object-Relational Developer's Guide

Row Object Storage in Object Tables
Row objects are stored in object tables. An object table is a special kind of table that
holds objects and provides a relational view of the attributes of those objects. An object
table is logically and physically similar to a relational table whose column types
correspond to the top level attributes of the object type stored in the object table. The
key difference is that an object table can optionally contain an additional object
identifier (OID) column and index.

Storage Considerations for Object Identifiers (OIDs)
This section discusses the two types of object identifiers for row objects in object tables
and how they are stored and referenced.

An object identifier (OID) allows the corresponding row object to be referred to and
from other objects or from relational tables. A built-in data type called a REF
represents such references. REFs use object identifiers (OIDs) to point to row objects.

You can use either system-generated OIDs or primary-key based OIDs.

System-Generated Object Identifiers (OIDs)
System-generated OIDs are the default for row objects in an object table.

Oracle assigns to each row object a unique system-generated OID, 16 bytes in length,
that is automatically indexed for efficient OID-based lookups. The OID column is the
equivalent of having an extra 16-byte primary key column. In a distributed
environment, the system-generated unique identifier lets Oracle identify objects
unambiguously.

The object identifier column is a hidden column that Oracle uses to construct
references to the row objects. Oracle provides no access to the internal structure of
object identifiers. This structure can change at any time. Applications are only
concerned with using object references for fetching and navigating objects.

Primary-Key Based Object Identifiers (OIDs)
Oracle allows the option of specifying the primary key value of a row object as its
object identifier, if there is a primary key column.

Instead of using the system-generated OIDs, you use a CREATE TABLE statement with
this clause, OBJECT IDENTIFIER IS PRIMARY KEY. This specifies that the system use
the primary key column(s) as the OIDs of the objects in the table. That way, you can
use existing columns as the OIDs of the objects or use application generated OIDs that
are smaller than the 16-byte globally unique OIDs generated by Oracle.

You can enforce referential integrity on columns that store references to these row
objects in a way similar to foreign keys in relational tables.

See Also: "Using References to Row Objects" on page 1-7

See Also: Oracle Database SQL Language Reference for further
information on OBJECT IDENTIFER syntax

Note: Each primary-key based OID is locally (but not necessarily
globally) unique. If you require a globally unique identifier, you must
ensure that the primary key is globally unique or use
system-generated OIDs.

Design Considerations for REFs

Design Considerations for Oracle Objects 9-5

System-Generated Versus Primary-Key Based OIDs
Primary-key based identifiers make it faster and easier to load data into an object
table. By contrast, system-generated object identifiers need to be remapped using some
user-specified keys, especially when references to them are also stored. If you use
system-generated OIDs for an object table, Oracle maintains an index on the column
that stores these OIDs. A system-generated OID requires extra storage space for this
index and an extra 16 bytes of storage for each row object.

However, if each primary key value requires more than 16 bytes of storage and you
have a large number of REFs, using the primary key might require more space than
system-generated OIDs because each REF is the size of the primary key.

Performance of Object Comparisons
You can compare objects by invoking either a map or order method. A map method
converts objects into scalar values while preserving the ordering of the objects. Using a
map method is preferable because it allows the system to efficiently order objects.

The way objects are mapped has significant performance implications when sorting
the objects using ORDER BY or GROUP BY processes. An object may need to be
compared to other objects many times, and it is much more efficient if the objects can
be mapped to scalar values first (the map method). If the comparison semantics are
extremely complex, or if the objects cannot be mapped to scalar values for comparison,
you can define an order method that, given two objects, returns the ordering
determined by the object implementor. Order methods are not as efficient as map
methods, so performance may suffer if you use order methods.

Consider an object type address consisting of four character attributes: street,
city, state, and zipcode. Here, the most efficient comparison method is a map
method because each object can be converted easily into scalar values. For example,
you might define a map method that orders all of the objects by state.

On the other hand, suppose you want to compare binary objects, such as images. In
this case, the comparison semantics may be too complex to use a map method; if so,
you can use an order method to perform comparisons. For example, you could create
an order method that compares images according to brightness or the number of
pixels in each image.

If an object type does not have either a map or order method, only equality
comparisons are allowed on objects of that type. In this case, Oracle performs the
comparison by doing a field-by-field comparison of the corresponding object
attributes, in the order they are defined. If the comparison fails at any point, a FALSE
value is returned. If the comparison matches at every point, a TRUE value is returned.
However, if an object has a LOB or ANYDATA attributes, then Oracle does not compare
the object on a field-by-field basis. Such objects must have a map or order method to
perform comparisons.

Design Considerations for REFs
This section discusses considerations when working with REFs.

■ Storage Size of REFs

Note: For any one object type, you can implement either a map or an
order method, but not both. Neither are required.

Design Considerations for REFs

9-6 Oracle Database Object-Relational Developer's Guide

■ Integrity Constraints for REF Columns

■ Performance and Storage Considerations for Scoped REFs

■ Speeding up Object Access Using the WITH ROWID Option

Storage Size of REFs
A REF contains the following three logical components:

■ OID of the object referenced. A system-generated OID is 16 bytes long. The size of
a primary-key based OID depends on the size of the primary key column(s).

■ OID of the table or view containing the object referenced, which is 16 bytes long.

■ Rowid hint, which is 10 bytes long.

Integrity Constraints for REF Columns
Referential integrity constraints on REF columns ensure that there is a row object for
the REF. Referential integrity constraints on REFs create the same relationship as
specifying a primary key/foreign key relationship on relational data. In general, you
should use referential integrity constraints wherever possible because they are the only
way to ensure that the row object for the REF exists. However, you cannot specify
referential integrity constraints on REFs that are in nested tables.

Performance and Storage Considerations for Scoped REFs
A scoped REF is constrained to contain only references to a specified object table. You
can specify a scoped REF when you declare a column type, collection element, or
object type attribute to be a REF.

In general, you should use scoped REFs instead of unscoped REFs because scoped
REFs are stored more efficiently. Whereas an unscoped REF takes at least 36 bytes to
store (more if it uses rowids), a scoped REF is stored as just the OID of its target object
and can take less than 16 bytes, depending on whether the referenced OID is
system-generated or primary-key based. A system-generated OID requires 16 bytes; a
primary key based (PK-based) OID requires enough space to store the primary key
value, which may be less than 16 bytes. However, a REF to a PK-based OID, which
must be dynamically constructed upon selection, may take more space in memory
than a REF to a system-generated OID.

Besides requiring less storage space, scoped REFs often enable the optimizer to
optimize queries that dereference a scoped REF into more efficient joins. This
optimization is not possible for unscoped REFs because the optimizer cannot
determine the containing table(s) for unscoped REFs at query-optimization time.

Unlike referential integrity constraints, scoped REFs do not ensure that the referenced
row object exists; they only ensure that the referenced object table exists. Therefore, if
you specify a scoped REF to a row object and then delete the row object, the scoped
REF becomes a dangling REF because the referenced object no longer exists.

Unscoped REFs are useful if the application design requires that the objects referenced
be scattered in multiple tables. Because rowid hints are ignored for scoped REFs, you
should use unscoped REFs if the performance gain of the rowid hint, as explained in
the "Speeding up Object Access Using the WITH ROWID Option" on page 9-7,

Note: Referential integrity constraints are scoped implicitly.

Design Considerations for REFs

Design Considerations for Oracle Objects 9-7

outweighs the benefits of the storage saving and query optimization of using scoped
REFs.

Indexing Scoped REFs
You can build indexes on scoped REF columns using the CREATE INDEX command.
This allows you to use the index to efficiently evaluate queries that dereference the
scoped REFs. Such queries are turned into joins implicitly. For certain types of queries,
Oracle can use an index on the scoped REF column to evaluate the join efficiently.

For example, suppose the object type address_objtyp is used to create an object
table named address_objtab:

CREATE TABLE address_objtab OF address_objtyp ;

A people_reltab2 table can be created that has the same definition as the people_
reltab table shown in Example 9–2 on page 9-3, except that a REF is used for the
address. Next, an index can be created on the address_ref column.

Example 9–3 Creating an Index on Scoped REF Columns

CREATE TABLE people_reltab2 (
 id NUMBER(4) CONSTRAINT pk_people_reltab2 PRIMARY KEY,
 name_obj name_objtyp,
 address_ref REF address_objtyp SCOPE IS address_objtab,
 phones_ntab phone_ntabtyp)
 NESTED TABLE phones_ntab STORE AS phone_store_ntab2 ;

CREATE INDEX address_ref_idx ON people_reltab2 (address_ref) ;

The following query dereferences the address_ref:

SELECT id FROM people_reltab2 p
 WHERE p.address_ref.state = 'CA' ;

When this query is executed, the address_ref_idx index is used to efficiently
evaluate it. Here, address_ref is a scoped REF column that stores references to
addresses stored in the address_objtab object table. Oracle implicitly transforms
the preceding query into a query with a join:

SELECT p.id FROM people_reltab2 p, address_objtab a
 WHERE p.address_ref = REF(a) AND a.state = 'CA' ;

The Oracle query optimizer might create a plan to perform a nested-loops join with
address_objtab as the outer table and look up matching addresses using the index
on the address_ref scoped REF column.

Speeding up Object Access Using the WITH ROWID Option
If the WITH ROWID option is specified for a REF column, Oracle maintains the rowid of
the object referenced in the REF. Then, Oracle can find the object referenced directly
using the rowid contained in the REF, without the need to fetch the rowid from the
OID index. Therefore, you use the WITH ROWID option to specify a rowid hint.
Maintaining the rowid requires more storage space because the rowid adds 10 bytes to
the storage requirements of the REF.

Bypassing the OID index search improves the performance of REF traversal
(navigational access) in applications. The actual performance gain may vary from
application to application depending on the following factors:

■ How large the OID indexes are.

Design Considerations for Collections

9-8 Oracle Database Object-Relational Developer's Guide

■ Whether the OID indexes are cached in the buffer cache.

■ How many REF traversals an application does.

The WITH ROWID option is only a hint because, when you use this option, Oracle
checks the OID of the row object with the OID in the REF. If the two OIDs do not
match, Oracle uses the OID index instead. The rowid hint is not supported for scoped
REFs, for REFs with referential integrity constraints, or for primary key-based REFs.

Design Considerations for Collections
This section discusses considerations when working with collections.

■ Viewing Object Data in Relational Form with Unnesting Queries

■ Storage Considerations for Varrays

■ Performance of Varrays Versus Nested Tables

■ Design Considerations for Nested Tables

■ Design Considerations for Multilevel Collections

Viewing Object Data in Relational Form with Unnesting Queries
An unnesting query on a collection allows the data to be viewed in a flat (relational)
form. You can execute unnesting queries on single-level and multilevel collections of
either nested tables or varrays. This section contains examples of unnesting queries.

Nested tables can be unnested for queries using the TABLE syntax, as in the following
example:

Example 9–4 Unnesting a Nested Table with the TABLE Function

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(p.phones_ntab) n ;

Here, phones_ntab specifies the attributes of the phones_ntab nested table. To
retrieve even parent rows that have no child rows (no phone numbers, in this case),
use the outer join syntax, with the +. For example:

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(p.phones_ntab) (+) n ;

If the SELECT list of a query does not refer to any columns from the parent table other
than the nested table column, the query is optimized to execute only against the nested
table's storage table.

The unnesting query syntax is the same for varrays as for nested tables. For instance,
suppose the phones_ntab nested table is instead a varray named phones_var. The
following example shows how to use the TABLE syntax to query the varray:

SELECT p.name_obj, v.num
FROM people_reltab p, TABLE(p.phones_var) v;

Using Procedures and Functions in Unnesting Queries
You can create procedures and functions that you can then execute to perform
unnesting queries. For example, you can create a function called home_phones() that
returns only the phone numbers where location is home. To create the home_
phones() function, you enter code like the following:

Design Considerations for Collections

Design Considerations for Oracle Objects 9-9

Example 9–5 Creating the home_phones Function

CREATE OR REPLACE FUNCTION home_phones(allphones IN phone_ntabtyp)
 RETURN phone_ntabtyp IS
 homephones phone_ntabtyp := phone_ntabtyp();
 indx1 number;
 indx2 number := 0;
BEGIN
 FOR indx1 IN 1..allphones.count LOOP
 IF
 allphones(indx1).location = 'home'
 THEN
 homephones.extend; -- extend the local collection
 indx2 := indx2 + 1;
 homephones(indx2) := allphones(indx1);
 END IF;
 END LOOP;

 RETURN homephones;
END;
/

Now, to query for a list of people and their home phone numbers, enter the following:

Example 9–6 Using the TABLE Function to Unnest a Query

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(
 CAST(home_phones(p.phones_ntab) AS phone_ntabtyp)) n ;

To query for a list of people and their home phone numbers, including those people
who do not have a home phone number listed, enter the following:

SELECT p.name_obj, n.num
 FROM people_reltab p,
 TABLE(CAST(home_phones(p.phones_ntab) AS phone_ntabtyp))(+) n ;

Storage Considerations for Varrays
The size of a stored varray depends only on the current count of the number of
elements in the varray and not on the maximum number of elements that it can hold.
Because the storage of varrays incurs some overhead, such as null information, the
size of the varray stored may be slightly greater than the size of the elements
multiplied by the count.

Varrays are stored in columns either as raw values or LOBs. Oracle decides how to
store the varray when the varray is defined, based on the maximum possible size of
the varray computed using the LIMIT of the declared varray. If the size exceeds
approximately 4000 bytes, then the varray is stored in LOBs. Otherwise, the varray is
stored in the column itself as a raw value. In addition, Oracle supports inline LOBs
which means that elements that fit in the first 4000 bytes of a large varray, with some
bytes reserved for the LOB locator, are stored in the column of the row. See also Oracle
Database SecureFiles and Large Objects Developer's Guide.

See Also: Oracle Database SQL Language Reference and Oracle
Database Data Cartridge Developer's Guide for more information
about the TABLE function

Design Considerations for Collections

9-10 Oracle Database Object-Relational Developer's Guide

Propagating VARRAY Size Change
When changing the size of a VARRAY type, a new type version is generated for the
dependent types. It is important to be aware of this when a VARRAY column is not
explicitly stored as a LOB and its maximum size is originally smaller than 4000 bytes.
If the size is larger than or equal to 4000 bytes after the increase, the VARRAY column
has to be stored as a LOB. This requires an extra operation to upgrade the metadata of
the VARRAY column in order to set up the necessary LOB metadata information
including the LOB segment and LOB index.

The CASCADE option in the ALTER TYPE statement propagates the VARRAY size
change to its dependent types and tables. A new version is generated for each valid
dependent type and dependent tables metadata are updated accordingly based on the
different case scenarios described previously. If the VARRAY column is in a cluster
table, an ALTER TYPE statement with the CASCADE option fails because a cluster table
does not support a LOB.

The CASCADE option in the ALTER TYPE statement also provides the [NOT]
INCLUDING TABLE DATA option. The NOT INCLUDING TABLE DATA option only
updates the metadata of the table, but does not convert the data image. In order to
convert the VARRAY image to the latest version format, you can either specify
INCLUDING TABLE DATA explicitly in ALTER TYPE CASCADE statement or issue
ALTER TABLE UPGRADE statement.

Performance of Varrays Versus Nested Tables
If the entire collection is manipulated as a single unit in the application, varrays
perform much better than nested tables. The varray is stored packed and requires no
joins to retrieve the data, unlike nested tables.

Varray Querying
The unnesting syntax can be used to access varray columns similar to the way it is
used to access nested tables. See "Viewing Object Data in Relational Form with
Unnesting Queries" on page 9-8 for more information.

Varray Updates
Piece-wise updates of a varray value are not supported. Thus, when a varray is
updated, the entire old collection is replaced by the new collection.

Design Considerations for Nested Tables
The following sections contain design considerations for using nested tables.

Nested Table Storage
Oracle stores the rows of a nested table in a separate storage table. A system generated
NESTED_TABLE_ID, which is 16 bytes in length, correlates the parent row with the
rows in its corresponding storage table.

Figure 9–2 shows how the storage table works. The storage table contains each value
for each nested table in a nested table column. Each value occupies one row in the
storage table. The storage table uses the NESTED_TABLE_ID to track the nested table
for each value. So, in Figure 9–2, all of the values that belong to nested table A are
identified, all of the values that belong to nested table B are identified, and so on.

Design Considerations for Collections

Design Considerations for Oracle Objects 9-11

Figure 9–2 Nested Table Storage

Nested Table in an Index-Organized Table (IOT)
If a nested table has a primary key, you can organize the nested table as an
index-organized table (IOT). If the NESTED_TABLE_ID column is a prefix of the
primary key for a given parent row, Oracle physically clusters its child rows together.
So, when a parent row is accessed, all its child rows can be efficiently retrieved. When
only parent rows are accessed, efficiency is maintained because the child rows are not
inter-mixed with the parent rows.

Figure 9–3 shows how the storage table works when the nested table is in an IOT. The
storage table groups the values for each nested table in a nested table column by
NESTED_TABLE_ID. In Figure 9–3, for each nested table in the NT_DATA column of
the parent table, the data is grouped in the storage table: all of the values in nested
table A are grouped together, all of the values in nested table B are grouped together,
and so on.

B21
B22
C33
A11
E51
B25
E52
A12
E54
B23
C32
A13
D41
B24
E53

B
B
C
A
E
B
E
A
E
B
C
A
D
B
E

ValuesNESTED_TABLE_ID
Storage Table

A
B
C
D
E

. . .

. . .

. . .

. . .

. . .

NT_DATADATA4
. . .
. . .
. . .
. . .
. . .

DATA3
. . .
. . .
. . .
. . .
. . .

DATA2
. . .
. . .
. . .
. . .

DATA1

. . .

Design Considerations for Collections

9-12 Oracle Database Object-Relational Developer's Guide

Figure 9–3 Nested Table in IOT Storage

In addition, the COMPRESS clause enables prefix compression on the IOT rows. It
factors out the key of the parent in every child row. That is, the parent key is not
repeated in every child row, thus providing significant storage savings.

In other words, if you specify nested table compression using the COMPRESS clause,
the amount of space required for the storage table is reduced because the NESTED_
TABLE_ID is not repeated for each value in a group. Instead, the NESTED_TABLE_ID
is stored only once for each group, as illustrated in Figure 9–4.

A11
A12
A13
B21
B22
B23
B24
B25
C31
C32
D41
E51
E52
E53
E54

A
A
A
B
B
B
B
B
C
C
D
E
E
E
E

ValuesNESTED_TABLE_ID
Storage for

nested
table A

Storage for
nested
table B

Storage for
nested
table C

Storage for
nested
table E

Storage for
nested
table D

Storage Table

A
B
C
D
E

. . .

. . .

. . .

. . .

. . .

NT_DATADATA4
. . .
. . .
. . .
. . .
. . .

DATA3
. . .
. . .
. . .
. . .
. . .

DATA2
. . .
. . .
. . .
. . .

DATA1

. . .

Design Considerations for Collections

Design Considerations for Oracle Objects 9-13

Figure 9–4 Nested Table in IOT Storage with Compression

In general, Oracle recommends that nested tables be stored in an IOT with the
NESTED_TABLE_ID column as a prefix of the primary key. Further, prefix
compression should be enabled on the IOT. However, if you usually do not retrieve the
nested table as a unit and you do not want to cluster the child rows, do not store the
nested table in an IOT and do not specify compression.

Nested Table Indexes
When creating nested tables stored in heap tables (as opposed to IOTs), Oracle
database automatically creates an index on the NESTED_TABLE_ID column of the
storage table and an index on the corresponding ID column of the parent table.
Creating an index on the NESTED_TABLE_ID column enables the database to access
the child rows of the nested table more efficiently, because the database must perform
a join between the parent table and the nested table using the NESTED_TABLE_ID
column.

Nested Table Locators
For large child sets, the parent row and a locator to the child set can be returned so that
the child rows can be accessed on demand; the child sets also can be filtered. Using
nested table locators enables you to avoid unnecessarily transporting child rows for
every parent.

You can perform either one of the following actions to access the child rows using the
nested table locator:

■ Call the OCI collection functions. This action occurs implicitly when you access
the elements of the collection in the client-side code, such as OCIColl* functions.
The entire collection is retrieved implicitly on the first access.

A11
A12
A13
B21
B22
B23
B24
B25
C31
C32
D41
E51
E52
E53
E54

A

B

C

D

ValuesNESTED_TABLE_ID
Storage Table

Storage for
nested
table A

Storage for
nested
table B

Storage for
nested
table C

Storage for
nested
table E

Storage for
nested
table D

A
B
C
D
E

. . .

. . .

. . .

. . .

. . .

NT_DATADATA4
. . .
. . .
. . .
. . .
. . .

DATA3
. . .
. . .
. . .
. . .
. . .

DATA2
. . .
. . .
. . .
. . .

DATA1

E

. . .

Design Considerations for Collections

9-14 Oracle Database Object-Relational Developer's Guide

■ Use SQL to retrieve the rows corresponding to the nested table.

In a multilevel collection, you can use a locator with a specified collection at any level
of nesting.

The following topics specify ways that a collection can be retrieved as a locator:

■ At Table Creation Time

■ As a HINT During Retrieval

At Table Creation Time When the collection type is being used as a column type and the
NESTED TABLE storage clause is used, you can use the RETURN AS LOCATOR clause to
specify that a particular collection is to be retrieved as a locator.

For instance, suppose that inner_table is a collection type consisting of three levels
of nested tables. In the following example, the RETURN AS LOCATOR clause specifies
that the third level of nested tables is always to be retrieved as a locator.

Example 9–7 Using the RETURN AS LOCATOR Clause

CREATE TYPE inner_table AS TABLE OF NUMBER;
/
CREATE TYPE middle_table AS TABLE OF inner_table;
/
CREATE TYPE outer_table AS TABLE OF middle_table;
/
CREATE TABLE tab1 (
 col1 NUMBER,
 col2 outer_table)
 NESTED TABLE col2 STORE AS col2_ntab
 (NESTED TABLE COLUMN_VALUE STORE AS cval1_ntab
 (NESTED TABLE COLUMN_VALUE STORE AS cval2_ntab RETURN AS LOCATOR));

As a HINT During Retrieval A query can retrieve a collection as a locator by means of the
hint NESTED_TABLE_GET_REFS. Here is an example of retrieving the column col2
from the table tab1 as a locator:

SELECT /*+ NESTED_TABLE_GET_REFS +*/ col2
 FROM tab1
 WHERE col1 = 2;

Unlike with the RETURN AS LOCATOR clause, however, you cannot specify a particular
inner collection to return as a locator when using the hint.

Optimizing Set Membership Queries
Set membership queries are useful when you want to search for a specific item in a
nested table. For example, the following query tests the membership in a child-set;
specifically, whether the location home is in the nested table phones_ntab, which is
in the parent table people_reltab:

SELECT * FROM people_reltab p
 WHERE 'home' IN (SELECT location FROM TABLE(p.phones_ntab)) ;

Oracle can execute a query that tests the membership in a child-set more efficiently by
transforming it internally into a semijoin. However, this optimization only happens if
the ALWAYS_SEMI_JOIN initialization parameter is set. If you want to perform

See Also: Oracle Call Interface Programmer's Guide for more
information about OCI collection functions.

Design Considerations for Collections

Design Considerations for Oracle Objects 9-15

semijoins, the valid values for this parameter are MERGE and HASH; these parameter
values indicate which join method to use.

Design Considerations for Multilevel Collections
Chapter 5, "Support for Collection Data Types" describes how to nest collection types
to create a true multilevel collection, such as a nested table of nested tables, a nested
table of varrays, a varray of nested tables, or a varray or nested table of an object type
that has an attribute of a collection type.

You can also nest collections indirectly using REFs. For example, you can create a
nested table of an object type that has an attribute that references an object that has a
nested table or varray attribute. If you do not actually need to access all elements of a
multilevel collection, then nesting a collection with REFs may provide better
performance because only the REFs need to be loaded, not the elements themselves.

True multilevel collections (specifically multilevel nested tables) perform better for
queries that access individual elements of the collection. Using nested table locators
can improve the performance of programmatic access if you do not need to access all
elements.

For an example of a collection that uses REFs to nest another collection, suppose you
create a new object type called person_objtyp using the object types shown in
Example 9–1 on page 9-2, which are name_objtyp, address_objtyp, and phone_
ntabtyp. Remember that the phone_ntabtyp object type is a nested table because
each person may have more than one phone number.

To create the person_objtyp object type and an object table called people_objtab
of person_objtyp object type, issue the following SQL statement:

Example 9–8 Creating an Object Table with a Multilevel Collection

CREATE TYPE person_objtyp AS OBJECT (
 id NUMBER(4),
 name_obj name_objtyp,
 address_obj address_objtyp,
 phones_ntab phone_ntabtyp);
/

CREATE TABLE people_objtab OF person_objtyp (id PRIMARY KEY)
 NESTED TABLE phones_ntab STORE AS phones_store_ntab ;

The people_objtab table has the same attributes as the people_reltab table. The
difference is that the people_objtab is an object table with row objects, while the
people_reltab table is a relational table with column objects.

Note: In the preceding example, home and location are child
set elements. If the child set elements are object types, they must
have a map or order method to perform a set membership query.

See Also: "Column Object Storage in Relational Tables" on page 9-2

Design Considerations for Collections

9-16 Oracle Database Object-Relational Developer's Guide

Figure 9–5 Object-Relational Representation of the people_objtab Object Table

You can reference the row objects in the people_objtab object table from other
tables. For example, suppose you want to create a projects_objtab table that
contains:

■ A project identification number for each project.

■ The title of each project.

■ The project lead for each project.

■ A description of each project.

■ Nested table collection of the team of people assigned to each project.

You can use REFs in the people_objtab for the project leads, and you can use a
nested table collection of REFs for the team. To begin, create a nested table object type
called personref_ntabtyp based on the person_objtyp object type:

CREATE TYPE personref_ntabtyp AS TABLE OF REF person_objtyp;
/
Now you are ready to create the object table projects_objtab. First, create the
object type projects_objtyp, then create the object table projects_objtab based
on the projects_objtyp as shown in Example 9–9.

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

NAME_OBJ ADDRESS_OBJ PHONES_NTAB

Object Type
NAME_OBJTYP

ID

PK

Number
NUMBER(4)

Object Type
ADDRESS_OBJTYP

Nested Table
PHONE_NTABTYP

Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

CITY STATE ZIPCODE

Text
VARCHAR(200)

STREET

Text
VARCHAR2(200)

Text
CHAR(2)

Text
VARCHAR2(20)

Nested Table PHONES_NTAB (of PHONE_NTABTYP)

NUM

Number
VARCHAR(14)

LOCATION

Text
VARCHAR(15)

Column Object NAME_OBJ (of NAME_OBJTYP)

MIDDLE LAST

Text
VARCHAR2(15)

FIRST

Text
VARCHAR2(15)

Text
VARCHAR2(15)

Design Considerations for Collections

Design Considerations for Oracle Objects 9-17

Example 9–9 Creating an Object Table Using REFs

CREATE TYPE projects_objtyp AS OBJECT (
 id NUMBER(4),
 title VARCHAR2(15),
 projlead_ref REF person_objtyp,
 description CLOB,
 team_ntab personref_ntabtyp);
/
CREATE TABLE projects_objtab OF projects_objtyp (id PRIMARY KEY)
 NESTED TABLE team_ntab STORE AS team_store_ntab ;

Figure 9–6 Object-Relational Representation of the projects_objtab Object Table

After the people_objtab object table and the projects_objtab object table are in
place, you indirectly have a nested collection. That is, the projects_objtab table
contains a nested table collection of REFs that point to the people in the people_
objtab table, and the people in the people_objtab table have a nested table
collection of phone numbers.

You can insert values into the people_objtab table as shown in Example 9–10.

Example 9–10 Inserting Values into the people_objtab Object Table

INSERT INTO people_objtab VALUES (
 0001,
 name_objtyp('JOHN', 'JACOB', 'SCHMIDT'),
 address_objtyp('1252 Maple Road', 'Fairfax', 'VA', '22033'),
 phone_ntabtyp(
 phone_objtyp('home', '650.555.0141'),
 phone_objtyp('work', '510.555.0122'))) ;

INSERT INTO people_objtab VALUES (
 0002,
 name_objtyp('MARY', 'ELLEN', 'MILLER'),
 address_objtyp('33 Spruce Street', 'McKees Rocks', 'PA', '15136'),
 phone_ntabtyp(

Table PROJECTS_OBJTAB (of PROJECTS_OBJTYP)

TITLE

Text
VARCHAR2(15)

PROJLEAD_REF

Reference
PERSON_OBJTYP

DESCRIPTION

Text
CLOB

TEAM_NTAB

Nested Table Reference
PERSONREF_NTABTYP

ID

PK

Number
NUMBER(4)

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

NAME_OBJ

Object Type
NAME_OBJTYP

ADDRESS_OBJ

Object Type
ADDRESS_OBJTYP

PHONES_NTAB

Nested Table
PHONE_NTABTYP

ID

PK

Number
NUMBER(4)

Refers to a
row of the
object table

Refers to multiple rows
of the object table

Design Considerations for Methods

9-18 Oracle Database Object-Relational Developer's Guide

 phone_objtyp('home', '415.555.0143'),
 phone_objtyp('work', '650.555.0192'))) ;

INSERT INTO people_objtab VALUES (
 0003,
 name_objtyp('SARAH', 'MARIE', 'SINGER'),
 address_objtyp('525 Pine Avenue', 'San Mateo', 'CA', '94403'),
 phone_ntabtyp(
 phone_objtyp('home', '510.555.0101'),
 phone_objtyp('work', '650.555.0178'),
 phone_objtyp('cell', '650.555.0143'))) ;

Then, you can insert into the projects_objtab relational table by selecting from the
people_objtab object table using a REF operator, as in Example 9–11.

Example 9–11 Inserting Values into the projects_objtab Object Table

INSERT INTO projects_objtab VALUES (
 1101,
 'Demo Product',
 (SELECT REF(p) FROM people_objtab p WHERE id = 0001),
 'Demo the product, show all the great features.',
 personref_ntabtyp(
 (SELECT REF(p) FROM people_objtab p WHERE id = 0001),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0003))) ;

INSERT INTO projects_objtab VALUES (
 1102,
 'Create PRODDB',
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 'Create a database of our products.',
 personref_ntabtyp(
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0003))) ;

Design Considerations for Methods
This section discusses considerations when working with methods.

■ Choosing a Language for Method Functions

■ Static Methods

■ Using SELF IN OUT NOCOPY with Member Procedures

■ Function-Based Indexes on the Return Values of Type Methods

Choosing a Language for Method Functions
Method functions can be implemented in any of the languages supported by Oracle,
such as PL/SQL, Java, or C. Consider the following factors when you choose the
language for a particular application:

■ Ease of use

Note: This example uses nested tables to store REFs, but you also
can store REFs in varrays. That is, you can have a varray of REFs.

Design Considerations for Methods

Design Considerations for Oracle Objects 9-19

■ SQL calls

■ Speed of execution

■ Same/different address space

In general, if the application performs intense computations, C is preferable, but if the
application performs a relatively large number of database calls, PL/SQL or Java is
preferable.

A method implemented in C executes in a separate process from the server using
external procedures. In contrast, a method implemented in Java or PL/SQL executes in
the same process as the server.

Example: Implementing a Method
The example described in this section involves an object type whose methods are
implemented in different languages. In the example, the object type ImageType has
an ID attribute, which is a NUMBER that uniquely identifies it, and an IMG attribute,
which is a BLOB that stores the raw image. The object type ImageType has the
following methods:

■ The method get_name fetches the name of the image by looking it up in the
database. This method is implemented in PL/SQL.

■ The method rotate rotates the image. This method is implemented in C.

■ The method clear returns a new image of the specified color. This method is
implemented in Java.

For implementing a method in C, a LIBRARY object must be defined to point to the
library that contains the external C routines. For implementing a method implemented
in Java, this example assumes that the Java class with the method has been compiled
and uploaded into Oracle.

The object type specification and its methods are shown in Example 9–12.

Example 9–12 Creating an Object Type with Methods Implemented in Different
Languages

CREATE LIBRARY myCfuncs TRUSTED AS STATIC
/

CREATE TYPE ImageType AS OBJECT (
 id NUMBER,
 img BLOB,
 MEMBER FUNCTION get_name return VARCHAR2,
 MEMBER FUNCTION rotate return BLOB,
 STATIC FUNCTION clear(color NUMBER) return BLOB);
/

CREATE TYPE BODY ImageType AS
 MEMBER FUNCTION get_name RETURN VARCHAR2
 IS
 imgname VARCHAR2(100);
 sqlstmt VARCHAR2(200);
 BEGIN
 sqlstmt := 'SELECT name INTO imgname FROM imgtab WHERE imgid = id';
 EXECUTE IMMEDIATE sqlstmt;
 RETURN imgname;
 END;

 MEMBER FUNCTION rotate RETURN BLOB

Design Considerations for Methods

9-20 Oracle Database Object-Relational Developer's Guide

 AS LANGUAGE C
 NAME "Crotate"
 LIBRARY myCfuncs;

 STATIC FUNCTION clear(color NUMBER) RETURN BLOB
 AS LANGUAGE JAVA
 NAME 'myJavaClass.clear(oracle.sql.NUMBER) return oracle.sql.BLOB';

END;
/

Static Methods
Static methods differ from member methods in that the SELF value is not passed in as
the first parameter. Methods in which the value of SELF is not relevant should be
implemented as static methods. Static methods can be used for user-defined
constructors.

Example 9–13 shows a constructor-like method that constructs an instance of the type
based on the explicit input parameters and inserts the instance into the specified table:.

Example 9–13 Creating an Object Type with a STATIC Method

CREATE TYPE atype AS OBJECT(
 a1 NUMBER,
 STATIC PROCEDURE newa (
 p1 NUMBER,
 tabname VARCHAR2,
 schname VARCHAR2));
/
CREATE TYPE BODY atype AS
 STATIC PROCEDURE newa (p1 NUMBER, tabname VARCHAR2, schname VARCHAR2)
 IS
 sqlstmt VARCHAR2(100);
 BEGIN
 sqlstmt := 'INSERT INTO '||schname||'.'||tabname|| ' VALUES (atype(:1))';
 EXECUTE IMMEDIATE sqlstmt USING p1;
 END;
END;
/

CREATE TABLE atab OF atype;

BEGIN
 atype.newa(1, 'atab', 'HR');
END;
/

Restriction: Type methods can be mapped only to static Java
methods.

See Also:

■ Oracle Database Java Developer's Guide for more information

■ Chapter 4, "Object Support in Oracle Programming
Environments" for more information about choosing a
language

Design Considerations for Methods

Design Considerations for Oracle Objects 9-21

Using SELF IN OUT NOCOPY with Member Procedures
In member procedures, if SELF is not declared, its parameter mode defaults to IN OUT.
However, the default behavior does not include the NOCOPY compiler hint. See
"Member Methods" on page 2-8.

Because the value of the IN OUT actual parameter is copied into the corresponding
formal parameter, the copying slows down execution when the parameters hold large
data structures such as instances of large object types.

For performance reasons, you may want to include SELF IN OUT NOCOPY when
passing a large object type as a parameter. For example:

MEMBER PROCEDURE my_proc (SELF IN OUT NOCOPY my_LOB)

Function-Based Indexes on the Return Values of Type Methods
A function-based index is an index based on the return values of an expression or
function. The function may be a method function of an object type.

A function-based index built on a method function precomputes the return value of
the function for each object instance in the column or table being indexed and stores
those values in the index. There they can be referenced without having to evaluate the
function again.

Function-based indexes are useful for improving the performance of queries that have
a function in the WHERE clause. For example, the following code contains a query of an
object table emps:

CREATE TYPE emp_t AS OBJECT(
 name VARCHAR2(36),
 salary NUMBER,
 MEMBER FUNCTION bonus RETURN NUMBER DETERMINISTIC);
/
CREATE TYPE BODY emp_t IS
 MEMBER FUNCTION bonus RETURN NUMBER DETERMINISTIC IS
 BEGIN
 RETURN self.salary * .1;
 END;
END;
/

CREATE TABLE emps OF emp_t ;

SELECT e.name
 FROM emps e
 WHERE e.bonus() > 2000;

To evaluate this query, Oracle must evaluate bonus() for each row object in the table.
If there is a function-based index on the return values of bonus(), then this work has

See Also:

■ Oracle Database PL/SQL Language Reference for information on
performance issues and restrictions on the use of NOCOPY

■ Oracle Database SQL Language Reference for information about
using NOCOPY in the CREATE PROCEDURE statement

Writing Reusable Code Using Invoker Rights

9-22 Oracle Database Object-Relational Developer's Guide

already been done, and Oracle can simply look up the results in the index. This
enables Oracle to return a result from the query more quickly.

Return values of a function can be usefully indexed only if those values are constant,
that is, only if the function always returns the same value for each object instance. For
this reason, to use a user-written function in a function-based index, the function must
have been declared with the DETERMINISTIC keyword, as in the preceding example.
This keyword promises that the function always returns the same value for each object
instance's set of input argument values.

The following example creates a function-based index on the method bonus() in the
table emps:

Example 9–14 Creating a Function-Based Index on a Method

CREATE INDEX emps_bonus_idx ON emps x (x.bonus()) ;

Writing Reusable Code Using Invoker Rights
To create generic object types that can be used in any schema, you must define the type
to use invoker rights, through the AUTHID CURRENT_USER option of CREATE OR
REPLACE TYPE. In general, use invoker rights when both of the following conditions
are true:

■ There are type methods that access and manipulate data.

■ Users who did not define these type methods must use them.

For example, you can grant user OE execute privileges on type atype created by HR
in "Static Methods" on page 9-20, and then create table atab based on the type:

GRANT EXECUTE ON atype TO oe;
CONNECT oe;
Enter password: password
CREATE TABLE atab OF HR.atype ;

Now, suppose user OE tries to use atype in the following statement:

BEGIN -- follwing call raises an error, insufficient privileges
 HR.atype.newa(1, 'atab', 'OE');
END;
/

This statement raises an error because the definer of the type (HR) does not have the
privileges required to perform the insert in the newa procedure. You can avoid this
error by defining atype using invoker rights. Here, you first drop the atab table in
both schemas and re-create atype using invoker rights:

DROP TABLE atab;
CONNECT hr;
Enter password: password
DROP TABLE atab;
DROP TYPE atype FORCE;
COMMIT;

CREATE TYPE atype AUTHID CURRENT_USER AS OBJECT(

See Also: Oracle Database Concepts and Oracle Database SQL
Language Reference for detailed information about function-based
indexes

Using Roles with Invoker's Rights Subprograms

Design Considerations for Oracle Objects 9-23

 a1 NUMBER,
 STATIC PROCEDURE newa(p1 NUMBER, tabname VARCHAR2, schname VARCHAR2));
/
CREATE TYPE BODY atype AS
 STATIC PROCEDURE newa(p1 NUMBER, tabname VARCHAR2, schname VARCHAR2)
 IS
 sqlstmt VARCHAR2(100);
 BEGIN
 sqlstmt := 'INSERT INTO '||schname||'.'||tabname|| '
 VALUES (HR.atype(:1))';
 EXECUTE IMMEDIATE sqlstmt USING p1;
 END;
END;
/

Now, if user OE tries to use atype again, the statement executes successfully:

GRANT EXECUTE ON atype TO oe;
CONNECT oe;
Enter password: password
CREATE TABLE atab OF HR.atype;

BEGIN
 HR.atype.newa(1, 'atab', 'OE');
END;
/
DROP TABLE atab;
CONNECT hr;
Enter password: password
DROP TYPE atype FORCE;

The statement is successful this time because the procedure is executed under the
privileges of the invoker (OE), not the definer (HR).

In a type hierarchy, a subtype has the same rights model as its immediate supertype.
That is, it implicitly inherits the rights model of the supertype and cannot explicitly
specify one. Furthermore, if the supertype was declared with definer rights, the
subtype must reside in the same schema as the supertype. These rules allow
invoker-rights type hierarchies to span schemas. However, type hierarchies that use a
definer-rights model must reside within a single schema. For example:

CREATE TYPE deftype1 AS OBJECT (...); --Definer-rights type
CREATE TYPE subtype1 UNDER deftype1 (...); --subtype in same schema as supertype
CREATE TYPE schema2.subtype2 UNDER deftype1 (...); --ERROR
CREATE TYPE invtype1 AUTHID CURRENT_USER AS OBJECT (...); --Invoker-rights type
CREATE TYPE schema2.subtype2 UNDER invtype1 (...); --LEGAL

Using Roles with Invoker's Rights Subprograms
The use of roles in a subprogram depends on whether it executes with definer's rights
or invoker's rights. Within a definer's rights subprogram, all roles are disabled. Roles
are not used for privilege checking, and you cannot set roles.

Within an invoker's rights subprogram, roles are enabled (unless the subprogram was
called directly or indirectly by a definer's rights subprogram). Roles are used for
privilege checking, and you can use native dynamic SQL to set roles for the session.
However, you cannot use roles to grant privileges on template objects because roles
apply at run time, not at compile time.

Replicating Object Tables and Columns

9-24 Oracle Database Object-Relational Developer's Guide

Replicating Object Tables and Columns
Object tables and object views can be replicated as materialized views. You can also
replicate relational tables that contain columns of an object, collection, or REF type.
Such materialized views are called object-relational materialized views.

All user-defined types required by an object-relational materialized view must exist at
the materialized view site as well as at the master site. They must have the same object
type IDs and versions at both sites.

This section contains the following topics:

■ Replicating Columns of Object, Collection, or REF Type

■ Replicating Object Tables

Replicating Columns of Object, Collection, or REF Type
To be updatable, a materialized view based on a table that contains an object column
must select the column as an object in the query that defines the view: if the query
selects only certain attributes of the column's object type, then the materialized view is
read-only.

The view-definition query can also select columns of collection or REF type. REFs can
be either primary-key based or have a system-generated key, and they can be either
scoped or unscoped. Scoped REF columns can be rescoped to a different table at the
site of the materialized view—for example, to a local materialized view of the master
table instead of the original, remote table.

Replicating Object Tables
A materialized view based on an object table is called an object materialized view.
Such a materialized view is itself an object table. An object materialized view is created
by adding the OF type keyword to the CREATE MATERIALIZED VIEW statement. For
example:

CREATE MATERIALIZED VIEW customer OF cust_objtyp AS
SELECT * FROM HR.Customer_objtab@dbs1;

As with an ordinary object table, each row of an object materialized view is an object
instance, so the view-definition query that creates the materialized view must select
entire objects from the master table: the query cannot select only a subset of the object
type's attributes. For example, the following materialized view is not allowed:

CREATE MATERIALIZED VIEW customer OF cust_objtyp AS
SELECT CustNo FROM HR.Customer_objtab@dbs1;

You can create an object-relational materialized view from an object table by omitting
the OF type keyword, but such a view is read-only: you cannot create an updatable
object-relational materialized view from an object table.

For example, the following CREATE MATERIALIZED VIEW statement creates a
read-only object-relational materialized view of an object table. Even though the
view-definition query selects all columns and attributes of the object type, it does not
select them as attributes of an object, so the view created is object-relational and
read-only:

CREATE MATERIALIZED VIEW customer AS
SELECT * FROM HR.Customer_objtab@dbs1;

Considerations Related to Type Evolution

Design Considerations for Oracle Objects 9-25

For both object-relational and object materialized views that are based on an object
table, if the type of the master object table is not FINAL, the FROM clause in the
materialized view definition query must include the ONLY keyword. For example:

CREATE MATERIALIZED VIEW customer OF cust_objtyp AS
SELECT CustNo FROM ONLY HR.Customer_objtab@dbs1;

Otherwise, the FROM clause must omit the ONLY keyword.

Constraints on Objects
Oracle does not support constraints and defaults in type specifications. However, you
can specify the constraints and defaults when creating the tables:

Example 9–15 Specifying Constraints on an Object Type When Creating a Table

CREATE TYPE customer_typ AS OBJECT(
 cust_id INTEGER);
/
CREATE TYPE department_typ AS OBJECT(
 deptno INTEGER);
/
CREATE TABLE customer_tab OF customer_typ (
 cust_id default 1 NOT NULL);

CREATE TABLE department_tab OF department_typ (
 deptno PRIMARY KEY);

CREATE TABLE customer_tab1 (
 cust customer_typ DEFAULT customer_typ(1)
 CHECK (cust.cust_id IS NOT NULL),
 some_other_column VARCHAR2(32));

Considerations Related to Type Evolution
The following sections contain design considerations relating to type evolution.

This section contains the following topics:

■ Pushing a Type Change Out to Clients

■ Changing Default Constructors

■ Altering the FINAL Property of a Type

Pushing a Type Change Out to Clients
Once a type has evolved on the server side, all client applications using this type need
to make the necessary changes to structures associated with the type. You can do this
with OTT/JPUB. You also may need to make programmatic changes associated with
the structural change. After making these changes, you must recompile your
application and relink.

Types may be altered between releases of a third-party application. To inform client
applications that they need to recompile to become compatible with the latest release
of the third-party application, you can have the clients call a release-oriented

See Also: Oracle Database Advanced Replication for more
information on replicating object tables and columns

Parallel Queries with Oracle Objects

9-26 Oracle Database Object-Relational Developer's Guide

compatibility initialization function. This function could take as input a string that tells
it which release the client application is working with. If the release string mismatches
with the latest version, an error is generated. The client application must then change
the release string as part of the changes required to become compatible with the latest
release.

For example:

FUNCTION compatibility_init(
rel IN VARCHAR2, errmsg OUT VARCHAR2)

RETURN NUMBER;

where:

■ rel is a release string that is chosen by the product, such as, 'Release 10.1'

■ errmsg is any error message that may need to be returned

■ The function returns 0 on success and a nonzero value on error

Changing Default Constructors
When a type is altered, its default, system-defined constructors need to be changed in
order (for example) to include newly added attributes in the parameter list. If you are
using default constructors, you need to modify their invocations in your program in
order for the calls to compile.

You can avoid having to modify constructor calls if you define your own constructor
functions instead of using the system-defined default ones. See "Advantages of
User-Defined Constructors" on page 8-17.

Altering the FINAL Property of a Type
When you alter a type T1 from FINAL to NOT FINAL, any attribute of type T1 in the
client program changes from being an inlined structure to a pointer to T1. This means
that you need to change the program to use dereferencing when this attribute is
accessed.

Conversely, when you alter a type from NOT FINAL to FINAL, the attributes of that
type change from being pointers to inlined structures.

For example, say that you have the types T1(a int) and T2(b T1), where T1's
property is FINAL. The C/JAVA structure corresponding to T2 is T2(T1 b). But if
you change T1's property to NOT FINAL, then T2's structure becomes T2(T1 *b).

Parallel Queries with Oracle Objects
Oracle lets you perform parallel queries with objects and objects synthesized in views,
when you follow these rules:

■ To make queries involving joins and sorts parallel (using the ORDER BY, GROUP BY,
and SET operations), a MAP function is required. In the absence of a MAP function,
the query automatically becomes serial.

■ Parallel queries on nested tables are not supported. Even if there are parallel hints
or parallel attributes for the table, the query is serial.

■ Parallel DML and parallel DDL are not supported with objects. DML and DDL are
always performed in serial.

Design Consideration Tips and Techniques

Design Considerations for Oracle Objects 9-27

■ Parallel DML is not supported on views with INSTEAD-OF trigger. However, the
individual statements within the trigger may be parallelized.

Design Consideration Tips and Techniques
The following sections provide assorted tips on various aspects of working with
Oracle object types.

This section contains the following topics:

■ Deciding Whether to Evolve a Type or Create a Subtype

■ How ANYDATA Differs from User-Defined Types

■ Polymorphic Views: An Alternative to an Object View Hierarchy

■ The SQLJ Object Type

■ Miscellaneous Design Tips

Deciding Whether to Evolve a Type or Create a Subtype
As an application goes through its life cycle, the question often arises whether to
change an existing object type or to create a specialized subtype to meet new
requirements. The answer depends on the nature of the new requirements and their
context in the overall application semantics. Here are two examples:

Changing a Widely Used Base Type
Suppose that we have an object type address with attributes Street, State, and
ZIP:

CREATE TYPE address AS OBJECT (
 Street VARCHAR2(80),
 State VARCHAR2(20),
 ZIP VARCHAR2(10));
/

We later find that we need to extend the address type by adding a Country attribute
to support addresses internationally. Is it better to create a subtype of address or to
evolve the address type itself?

With a general base type that has been widely used throughout an application, it is
better to implement the change using type evolution.

Adding Specialization
Suppose that an existing type hierarchy of Graphic types (for example, curve, circle,
square, text) needs to accommodate an additional variation, namely, Bezier curve. To
support a new specialization of this sort that does not reflect a shortcoming of the base
type, we should use inheritance and create a new subtype BezierCurve under the
Curve type.

To sum up, the semantics of the required change dictates whether we should use type
evolution or inheritance. For a change that is more general and affects the base type,
use type evolution. For a more specialized change, implement the change using
inheritance.

Design Consideration Tips and Techniques

9-28 Oracle Database Object-Relational Developer's Guide

How ANYDATA Differs from User-Defined Types
ANYDATA is an Oracle-supplied type that can hold instances of any Oracle data type,
whether built-in or user-defined. ANYDATA is a self-describing type and supports a
reflection-like API that you can use to determine the shape of an instance.

While both inheritance, through the substitutability feature, and ANYDATA provide the
polymorphic ability to store any of a set of possible instances in a placeholder, the two
models give the capability two very different forms.

In the inheritance model, the polymorphic set of possible instances must form part of a
single type hierarchy. A variable can potentially hold instances only of its defined type
or of its subtypes. You can access attributes of the supertype and call methods defined
in the supertype (and potentially overridden by the subtype). You can also test the
specific type of an instance using the IS OF and the TREAT operators.

ANYDATA variables, however, can store heterogeneous instances. You cannot access
attributes or call methods of the actual instance stored in an ANYDATA variable (unless
you extract out the instance). You use the ANYDATA methods to discover and extract
the type of the instance. ANYDATA is a very useful mechanism for parameter passing
when the function/procedure does not care about the specific type of the parameter(s).

Inheritance provides better modeling, strong typing, specialization, and so on. Use
ANYDATA when you simply want to be able to hold one of any number of possible
instances that do not necessarily have anything in common.

Polymorphic Views: An Alternative to an Object View Hierarchy
Chapter 6, "Applying an Object Model to Relational Data" describes how to build up a
view hierarchy from a set of object views each of which contains objects of a single
type. Such a view hierarchy enables queries on a view within the hierarchy to see a
polymorphic set of objects contained by the queried view or its subviews.

As an alternative way to support such polymorphic queries, you can define an object
view based on a query that returns a polymorphic set of objects. This approach is
especially useful when you want to define a view over a set of tables or views that
already exists.

For example, an object view of Person_t can be defined over a query that returns
Person_t instances, including Employee_t instances. The following statement
creates a view based on queries that select persons from a persons table and
employees from an employees table.

CREATE VIEW Persons_view OF Person_t AS
SELECT Person_t(...) FROM persons
UNION ALL
SELECT TREAT(Employee_t(...) AS Person_t) FROM employees;

An INSTEAD OF trigger defined for this view can use the VALUE function to access the
current object and to take appropriate action based on the object's most specific type.

Polymorphic views and object view hierarchies have these important differences:

■ Addressability: In a view hierarchy, each subview can be referenced
independently in queries and DML statements. Thus, every set of objects of a
particular type has a logical name. However, a polymorphic view is a single view,
so you must use predicates to obtain the set of objects of a particular type.

■ Evolution: If a new subtype is added, a subview can be added to a view hierarchy
without changing existing view definitions. With a polymorphic view, the single
view definition must be modified by adding another UNION branch.

Design Consideration Tips and Techniques

Design Considerations for Oracle Objects 9-29

■ DML Statements: In a view hierarchy, each subview can be either inherently
updatable or can have its own INSTEAD OF trigger. With a polymorphic view,
only one INSTEAD OF trigger can be defined for a given operation on the view.

The SQLJ Object Type
This section discusses the SQLJ object type.

The Intended Use of SQLJ Object Types
According to the Information Technology - SQLJ - Part 2 document (SQLJ Standard), a
SQLJ object type is a database object type designed for Java. A SQLJ object type maps
to a Java class. Once the mapping is registered through the extended SQL CREATE
TYPE command (a DDL statement), the Java application can insert or select the Java
objects directly into or from the database through an Oracle JDBC driver. This enables
the user to deploy the same class in the client, through JDBC, and in the server,
through SQL method dispatch.

Actions Performed When Creating a SQLJ Object Type
The extended SQL CREATE TYPE command:

■ Populates the database catalog with the external names for attributes, functions,
and the Java class. Also, dependencies between the Java class and its
corresponding SQLJ object type are maintained.

■ Validates the existence of the Java class and validates that it implements the
interface corresponding to the value of the USING clause.

■ Validates the existence of the Java fields (as specified in the EXTERNAL NAME
clause) and whether these fields are compatible with corresponding SQL
attributes.

■ Generates an internal class to support constructors, external variable names, and
external functions that return self as a result.

Uses of SQLJ Object Types
The SQLJ object type is a special case of SQL object type in which all methods are
implemented in a Java class. The mapping between a Java class and its corresponding
SQL type is managed by the SQLJ object type specification. That is, the SQLJ Object
type specification cannot have a corresponding type body specification.

Also, the inheritance rules among SQLJ object types specify the legal mapping
between a Java class hierarchy and its corresponding SQLJ object type hierarchy. These
rules ensure that the SQLJ Type hierarchy contains a valid mapping. That is, the
supertype or subtype of a SQLJ object type has to be another SQLJ object type.

Uses of Custom Object Types
The custom object type is the Java interface for accessing SQL object types. A SQL
object type may include methods that are implemented in languages such as PLSQL,
Java, and C. Methods implemented in Java in a given SQL object type can belong to
different unrelated classes. That is, the SQL object type does not map to a specific Java
class.

In order for the client to access these objects, JPublisher can be used to generate the
corresponding Java class. Furthermore, the user has to augment the generated classes
with the code of the corresponding methods. Alternatively, the user can create the
class corresponding to the SQL object type.

Design Consideration Tips and Techniques

9-30 Oracle Database Object-Relational Developer's Guide

At runtime, the JDBC user has to register the correspondence between a SQL Type
name and its corresponding Java class in a map.

Differences Between SQLJ and Custom Object Types Through JDBC
The following table summarizes the differences between SQLJ object types and custom
object types.

Miscellaneous Design Tips
This section discusses miscellaneous tips for designing with Oracle objects.

Column Substitutability and the Number of Attributes in a Hierarchy
If a column or table is of type T, Oracle adds a hidden column for each attribute of
type T and, if the column or table is substitutable, for each attribute of every subtype
of T, to store attribute data. A hidden typeid column is added as well, to keep track
of the type of the object instance in a row.

The number of columns in a table is limited to 1,000. A type hierarchy with a number
of total attributes approaching 1,000 puts you at risk of running up against this limit
when using substitutable columns of a type in the hierarchy. To avoid problems as a
result of this, consider one of the following options for dealing with a hierarchy that
has a large number of total attributes:

■ Use views

■ Use REFs

■ Break up the hierarchy

Circular Dependencies Among Types
Avoid creating circular dependencies among types. In other words, do not create
situations in which a method of type T returns a type T1, which has a method that
returns a type T.

Table 9–1 Differences Between SQLJ and Custom Object Types

Feature SQLJ Object Type Behavior Custom Object Type Behavior

Typecodes Use the OracleTypes.JAVA_STRUCT typecode to
register a SQLJ object type as a SQL OUT parameter.
The OracleTypes.JAVA_STRUCT typecode is also
used in the _SQL_TYPECODE field of a class
implementing the ORAData or SQLData interface.

Use the OracleTypes.STRUCT typecode to
register a custom object type as a SQL OUT
parameter. The OracleTypes.STRUCT typecode
is also used in the _SQL_TYPECODE field of a
class implementing the ORAData or SQLData
interface.

Creation Create a Java class implementing the SQLData or
ORAData and ORADataFactory interfaces first
and then load the Java class into the database. Next,
you issue the extended SQL CREATE TYPE
command for SQLJ object type.

Issue the extended SQL CREATE TYPE command
for a custom object type and then create the
SQLData or ORAData Java wrapper class using
JPublisher or do this manually.

Method Support Supports external names, constructor calls, and
calls for member functions with side effects.

There is no default class for implementing type
methods as Java methods. Some methods may
also be implemented in SQL.

Type Mapping Type mapping is automatically done by the
extended SQL CREATE TYPE command. However,
the SQLJ object type must have a defining Java class
on the client.

Register the correspondence between SQL and
Java in a type map. Otherwise, the type is
materialized as oracle.sql.STRUCT.

Inheritance There are rules for mapping SQL hierarchy to a Java
class hierarchy. See the Oracle Database SQL
Language Reference for a complete description of
these rules.

There are no mapping rules.

A

Sample Application Using Object-Relational Features A-1

A Sample Application Using Object-Relational
Features

This appendix describes a sample application that provides an overview of how to
create and use user-defined data types (Oracle Objects). An application is first
developed with the relational model and then with the object-relational model.

This appendix contains the following sections:

■ Introduction to the Sample Application

■ Implementing the Schema on the Relational Model

■ Implementing the Schema on the Object-Relational Model

■ Evolving Object Types

Introduction to the Sample Application
User-defined types are schema objects in which users formalize the data structures and
operations that appear in their applications.

The examples in this appendix illustrate the most important aspects of defining, using,
and evolving object types. One important aspect of working with object types is
creating methods that perform operations on objects. In the example, definitions of
object type methods use the PL/SQL language. Other aspects of using object types,
such as defining a type, use SQL.

The examples develop different versions of a database schema for an application that
manages customer purchase orders. First, a purely relational version is shown, and
then, an equivalent, object-relational version. Both versions provide for the same basic
kinds of entities—customers, purchase orders, line items, and so on. But the
object-relational version creates object types for these entities and manages data for
particular customers and purchase orders by instantiating instances of the respective
object types.

PL/SQL and Java provide additional capabilities beyond those illustrated in this
appendix, especially in the area of accessing and manipulating the elements of
collections.

Client applications that use the Oracle Call Interface (OCI), Pro*C/C++, Oracle Objects
for OLE (OO4O), or Oracle Data Providers for .NET (ODP.NET) can take advantage of
their extensive facilities for accessing objects and collections, and manipulating them
on clients.

Implementing the Schema on the Relational Model

A-2 Oracle Database Object-Relational Developer's Guide

Implementing the Schema on the Relational Model
This section implements the relational version of the purchase order schema depicted
in Figure A–1.

Entities and Relationships
The basic entities in this example are:

■ Customers

■ The stock of products for sale

■ Purchase orders

As shown in Figure A–1, a customer has contact information, so that the address and
set of telephone numbers is exclusive to that customer. The application does not allow
different customers to be associated with the same address or telephone numbers. If a
customer changes his address, the previous address ceases to exist. If someone ceases
to be a customer, the associated address disappears.

A customer has a one-to-many relationship with a purchase order. A customer can
place many orders, but a given purchase order is placed by one customer. Because a
customer can be defined before he places an order, the relationship is optional rather
than mandatory.

Similarly, a purchase order has a many-to-many relationship with a stock item.
Because this relationship does not show which stock items appear on which purchase
orders, the entity-relationship has the notion of a line item. A purchase order must
contain one or more line items. Each line item is associated only with one purchase
order. The relationship between line item and stock item is that a stock item can
appear on zero, one, or many line items, but each line item refers to exactly one stock
item.

See Also:

■ Oracle Database SQL Language Reference for a complete
description of SQL syntax and usage for user-defined types

■ Oracle Database PL/SQL Language Reference for a complete
discussion of PL/SQL capabilities

■ Oracle Database Java Developer's Guide for a complete discussion
of Java

■ Oracle Call Interface Programmer's Guide

■ Pro*C/C++ Programmer's Guide

■ Oracle Data Provider for .NET Developer's Guide

Implementing the Schema on the Relational Model

Sample Application Using Object-Relational Features A-3

Figure A–1 Entity-Relationship Diagram for Purchase Order Application

Creating Tables Under the Relational Model
The relational approach normalize everything into tables. The table names are
Customer_reltab, PurchaseOrder_reltab, and Stock_reltab.

Each part of an address becomes a column in the Customer_reltab table.
Structuring telephone numbers as columns sets an arbitrary limit on the number of
telephone numbers a customer can have.

The relational approach separates line items from their purchase orders and puts each
into its own table, named PurchaseOrder_reltab and LineItems_reltab.

As depicted in Figure A–1, a line item has a relationship to both a purchase order and
a stock item. These are implemented as columns in LineItems_reltab table with
foreign keys to PurchaseOrder_reltab and Stock_reltab.

contains

places

refers
to

Purchase Order

Customer

Line Items

Stock Item

customer number

customer name

purchase order number

customer number

order date

ship date

tostreet

tocity

tostate

tozip

stocknumber

price

tax rate

street

city

zip

phone1

phone2

phone3

1

1

N

N

N

1

Implementing the Schema on the Relational Model

A-4 Oracle Database Object-Relational Developer's Guide

The relational approach results in the tables described in the following sections.

Customer_reltab
The Customer_reltab table has the following definition:

Example A–1 Creating the Customer_reltab Table

CREATE TABLE Customer_reltab (
 CustNo NUMBER NOT NULL,
 CustName VARCHAR2(200) NOT NULL,
 Street VARCHAR2(200) NOT NULL,
 City VARCHAR2(200) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(20) NOT NULL,
 Phone1 VARCHAR2(20),
 Phone2 VARCHAR2(20),
 Phone3 VARCHAR2(20),
 PRIMARY KEY (CustNo));

This table, Customer_reltab, stores all the information about customers, which
means that it fully contains information that is intrinsic to the customer (defined with
the NOT NULL constraint) and information that is not as essential. According to this
definition of the table, the application requires that every customer have a shipping
address.

Our Entity-Relationship (E-R) diagram showed a customer placing an order, but the
table does not make allowance for any relationship between the customer and the
purchase order. This relationship must be managed by the purchase order.

PurchaseOrder_reltab
The PurchaseOrder_reltab table has the following definition:

Example A–2 Creating the PurchaseOrder_reltab Table

CREATE TABLE PurchaseOrder_reltab (
 PONo NUMBER, /* purchase order no */
 Custno NUMBER references Customer_reltab, /* Foreign KEY referencing
 customer */
 OrderDate DATE, /* date of order */
 ShipDate DATE, /* date to be shipped */
 ToStreet VARCHAR2(200), /* shipto address */
 ToCity VARCHAR2(200),
 ToState CHAR(2),
 ToZip VARCHAR2(20),
 PRIMARY KEY(PONo));

Note: We have adopted a convention in this section of adding the
suffix _reltab to the names of relational tables. Such a
self-describing notation can make your code easier to maintain.

You may find it useful to make distinctions between tables (_tab)
and types (_typ). But you can choose any names you want; one of
the advantages of object-relational constructs is that you can use
names that closely model the corresponding real-world objects.

Implementing the Schema on the Relational Model

Sample Application Using Object-Relational Features A-5

PurchaseOrder_reltab manages the relationship between the customer and the
purchase order by means of the foreign key (FK) column CustNo, which references the
CustNo key of the Customer_reltab. The PurchaseOrder_reltab table contains
no information about related line items. The line items table, described in the next
section, uses the purchase order number to relate a line item to its parent purchase
order.

Stock_reltab
The Stock_reltab table has the following definition:

Example A–3 Creating the Stock_reltab Table

CREATE TABLE Stock_reltab (
 StockNo NUMBER PRIMARY KEY,
 Price NUMBER,
 TaxRate NUMBER);

LineItems_reltab
The LineItems_reltab table has the following definition:

Example A–4 Creating the LineItems_reltab Table

CREATE TABLE LineItems_reltab (
 LineItemNo NUMBER,
 PONo NUMBER REFERENCES PurchaseOrder_reltab,
 StockNo NUMBER REFERENCES Stock_reltab,
 Quantity NUMBER,
 Discount NUMBER,
 PRIMARY KEY (PONo, LineItemNo));

The table name is in the plural form LineItems_reltab to emphasize to someone
reading the code that the table holds a collection of line items.

As shown in the E-R diagram, the list of line items has relationships with both the
purchase order and the stock item. These relationships are managed by LineItems_
reltab by means of two foreign key columns:

■ PONo, which references the PONo column in PurchaseOrder_reltab

■ StockNo, which references the StockNo column in Stock_reltab

Inserting Values Under the Relational Model
In our application, statements like these insert data into the tables:

Example A–5 Establish Inventory

INSERT INTO Stock_reltab VALUES(1004, 6750.00, 2);
INSERT INTO Stock_reltab VALUES(1011, 4500.23, 2);
INSERT INTO Stock_reltab VALUES(1534, 2234.00, 2);
INSERT INTO Stock_reltab VALUES(1535, 3456.23, 2);

Note: The Stock_reltab and PurchaseOrder_reltab tables
must be created before the LineItems_reltab table.

Implementing the Schema on the Relational Model

A-6 Oracle Database Object-Relational Developer's Guide

Example A–6 Register Customers

INSERT INTO Customer_reltab
 VALUES (1, 'Jean Nance', '2 Avocet Drive',
 'Redwood Shores', 'CA', '95054',
 '415-555-0102', NULL, NULL);

INSERT INTO Customer_reltab
 VALUES (2, 'John Nike', '323 College Drive',
 'Edison', 'NJ', '08820',
 '609-555-0190', '201-555-0140', NULL);

Example A–7 Place Orders

INSERT INTO PurchaseOrder_reltab
 VALUES (1001, 1, SYSDATE, '10-MAY-1997',
 NULL, NULL, NULL, NULL);

INSERT INTO PurchaseOrder_reltab
 VALUES (2001, 2, SYSDATE, '20-MAY-1997',
 '55 Madison Ave', 'Madison', 'WI', '53715');

Example A–8 Detail Line Items

INSERT INTO LineItems_reltab VALUES(01, 1001, 1534, 12, 0);
INSERT INTO LineItems_reltab VALUES(02, 1001, 1535, 10, 10);
INSERT INTO LineItems_reltab VALUES(01, 2001, 1004, 1, 0);
INSERT INTO LineItems_reltab VALUES(02, 2001, 1011, 2, 1);

Querying Data Under the Relational Model
The application can execute queries like these:

Example A–9 Get Customer and Line Item Data for a Specific Purchase Order

SELECT C.CustNo, C.CustName, C.Street, C.City, C.State,
 C.Zip, C.phone1, C.phone2, C.phone3,
 P.PONo, P.OrderDate,
 L.StockNo, L.LineItemNo, L.Quantity, L.Discount
 FROM Customer_reltab C,
 PurchaseOrder_reltab P,
 LineItems_reltab L
 WHERE C.CustNo = P.CustNo
 AND P.PONo = L.PONo
 AND P.PONo = 1001;

Example A–10 Get the Total Value of Purchase Orders

SELECT P.PONo, SUM(S.Price * L.Quantity)
 FROM PurchaseOrder_reltab P,
 LineItems_reltab L,
 Stock_reltab S
 WHERE P.PONo = L.PONo
 AND L.StockNo = S.StockNo
 GROUP BY P.PONo;

Example A–11 Get the Purchase Order and Line Item Data for Stock Item 1004

SELECT P.PONo, P.CustNo,
 L.StockNo, L.LineItemNo, L.Quantity, L.Discount
 FROM PurchaseOrder_reltab P,
 LineItems_reltab L

Implementing the Schema on the Object-Relational Model

Sample Application Using Object-Relational Features A-7

 WHERE P.PONo = L.PONo
 AND L.StockNo = 1004;

Updating Data Under the Relational Model
The application can execute statements like these to update the data:

Example A–12 Update the Quantity for Purchase Order 1001 and Stock Item 1534

UPDATE LineItems_reltab
 SET Quantity = 20
 WHERE PONo = 1001
 AND StockNo = 1534;

Deleting Data Under the Relational Model
The application can execute statements similar to Example A–13 to delete data.

Example A–13 Delete Purchase Order 1001 under the Relational Model

DELETE
 FROM LineItems_reltab
 WHERE PONo = 1001;

DELETE
 FROM PurchaseOrder_reltab
 WHERE PONo = 1001;

Implementing the Schema on the Object-Relational Model
The object-relational approach begins with the same entity relationships as in "Entities
and Relationships" on page A-2. Viewing these from the object-oriented perspective, as
in the following class diagram, allows us to translate more of the real-world structure
into the database schema.

Implementing the Schema on the Object-Relational Model

A-8 Oracle Database Object-Relational Developer's Guide

Figure A–2 Class Diagram for Purchase Order Application

Instead of breaking up addresses or multiple phone numbers into unrelated columns
in relational tables, the object-relational approach defines types to represent an entire
address and an entire list of phone numbers. Similarly, the object-relational approach
uses nested tables to keep line items with their purchase orders instead of storing them
separately.

The main entities—customers, stock, and purchase orders—become object types.
Object references are used to express some of the relationships among them. Collection
types—varrays and nested tables—are used to model multi-valued attributes.

Defining Types
You create an object type with a CREATE TYPE statement. For example, the following
statement creates the type StockItem_objtyp:

Example A–14 Creating the StockItem_objtyp Object

CREATE TYPE StockItem_objtyp AS OBJECT (
 StockNo NUMBER,
 Price NUMBER,

Note: This appendix implements an object-relational interface by
building an object-relational schema from scratch. With this
approach, we create object tables for data storage. Alternatively,
instead of object tables, you can use object views to implement an
object-relational interface to existing data stored in relational tables.
Chapter 6 discusses object views.

1 0 . . 10
Phone

Number

Address

Street
City
State
Zip

Customer

CustNo
CustName

Line Item

LineItemNo

Purchase Order

PONo
OrderDate
ShipDate

getPONo()
sumLineItems()

has

1 1

has

* ShipTo

1

*

*

places
contains

1

1

1 1

refers to Stock Item

StockNo
Price
TaxRate

Implementing the Schema on the Object-Relational Model

Sample Application Using Object-Relational Features A-9

 TaxRate NUMBER
);
/

Instances of type StockItem_objtyp are objects representing the stock items that
customers order. They have three numeric attributes. StockNo is the primary key.

The order in which you define types can make a difference. Ideally, you want to wait
to define types that refer to other types until you have defined the other types they
refer to.

For example, the type LineItem_objtyp refers to, and thus presupposes,
StockItem_objtyp by containing an attribute that is a REF to objects of
StockItem_objtyp. You can see this in the statement that creates the type
LineItem_objtyp.

Example A–15 Creating the LineItem_objtyp Object

CREATE TYPE LineItem_objtyp AS OBJECT (
 LineItemNo NUMBER,
 Stock_ref REF StockItem_objtyp,
 Quantity NUMBER,
 Discount NUMBER
);
/

Instances of type LineItem_objtyp are objects that represent line items. They have
three numeric attributes and one REF attribute. The LineItem_objtyp models the
line item entity and includes an object reference to the corresponding stock object.

Sometimes the web of references among types makes it difficult or impossible to avoid
creating a type before all the types that it presupposes are created. To deal with this
sort of situation, you can create what is called an incomplete type to use as a
placeholder for other types that you want to create to refer to. Then, when you have
created the other types, you can come back and replace the incomplete type with a
complete one.

For example, if we had needed to create LineItem_objtyp before we created
StockItem_objtyp, we could have used a statement like the following to create
LineItem_objtyp as an incomplete type:

CREATE TYPE LineItem_objtyp;

The form of the CREATE TYPE statement used to create an incomplete type does not
have the phrase AS OBJECT or the specification of attributes.

To replace an incomplete type with a complete definition, include the phrase OR
REPLACE as shown in the following example:

Example A–16 Replacing the LineItem_objtyp Object

CREATE OR REPLACE TYPE LineItem_objtyp AS OBJECT (
 LineItemNo NUMBER,
 Stock_ref REF StockItem_objtyp,
 Quantity NUMBER,
 Discount NUMBER
);
/

It is never wrong to include the words OR REPLACE, even if you have no incomplete
type to replace.

Implementing the Schema on the Object-Relational Model

A-10 Oracle Database Object-Relational Developer's Guide

Now create the remaining types we need for the schema. The following statement
defines an array type for the list of phone numbers:

Example A–17 Creating the PhoneList_vartyp Type

CREATE TYPE PhoneList_vartyp AS VARRAY(10) OF VARCHAR2(20);
/

Any data unit, or instance, of type PhoneList_vartyp is a varray of up to 10
telephone numbers, each represented by a data item of type VARCHAR2.

Either a varray or a nested table could be used to contain a list of phone numbers. In
this case, the list is the set of contact phone numbers for a single customer. A varray is
a better choice than a nested table for the following reasons:

■ The order of the numbers might be important: varrays are ordered while nested
tables are unordered.

■ The number of phone numbers for a specific customer is small. Varrays force you
to specify a maximum number of elements (10 in this case) in advance. They use
storage more efficiently than nested tables, which have no special size limitations.

■ You can query a nested table but not a varray. But there is no reason to query the
phone number list, so using a nested table offers no benefit.

In general, if ordering and bounds are not important design considerations, then
designers can use the following rule of thumb for deciding between varrays and
nested tables: If you need to query the collection, then use nested tables; if you intend
to retrieve the collection as a whole, then use varrays.

The following statement defines the object type Address_objtyp to represent
addresses:

Example A–18 Creating the Address_objtyp Object

CREATE TYPE Address_objtyp AS OBJECT (
 Street VARCHAR2(200),
 City VARCHAR2(200),
 State CHAR(2),
 Zip VARCHAR2(20)
)
/

All of the attributes of an address are character strings, representing the usual parts of
a simplified mailing address.

The following statement defines the object type Customer_objtyp, which uses other
object types as building blocks.

Example A–19 Creating the Customer_objtyp Object

CREATE TYPE Customer_objtyp AS OBJECT (
 CustNo NUMBER,
 CustName VARCHAR2(200),
 Address_obj Address_objtyp,
 PhoneList_var PhoneList_vartyp,

See Also: Chapter 9, "Design Considerations for Oracle Objects"
for more information about the design considerations for varrays
and nested tables

Implementing the Schema on the Object-Relational Model

Sample Application Using Object-Relational Features A-11

 ORDER MEMBER FUNCTION
 compareCustOrders(x IN Customer_objtyp) RETURN INTEGER
) NOT FINAL;
/

Instances of the type Customer_objtyp are objects that represent blocks of
information about specific customers. The attributes of a Customer_objtyp object
are a number, a character string, an Address_objtyp object, and a varray of type
PhoneList_vartyp.

The clause NOT FINAL enables us to create subtypes of the customer type later if we
wish. By default, types are created as FINAL, which means that the type cannot be
further specialized by deriving subtypes from it. We define a subtype of Customer_
objtyp for a more specialized kind of customer later in this appendix.

Every Customer_objtyp object also has an associated order method, one of the two
types of comparison methods. Whenever Oracle needs to compare two Customer_
objtyp objects, it implicitly invokes the compareCustOrders method to do so.

The two types of comparison methods are map methods and order methods. This
application uses one of each for purposes of illustration.

An ORDER method must be called for every two objects being compared, whereas a
map method is called once for each object. In general, when sorting a set of objects, the
number of times an ORDER method is called is more than the number of times a map
method would be called.

The following statement defines a type for a nested table of line items. Each purchase
order will use an instance of this nested table type to contain the line items for that
purchase order:

Example A–20 Creating the LineItemList_ntabtyp Type

CREATE TYPE LineItemList_ntabtyp AS TABLE OF LineItem_objtyp;
/

An instance of this type is a nested table object (in other words, a nested table), each
row of which contains an object of type LineItem_objtyp. A nested table of line
items is a better choice to represent the multivalued line item list than a varray of
LineItem_objtyp objects, because:

■ Most applications will need to query the contents of line items. This can be done
using SQL if the line items are stored in a nested table but not if they are stored in
a varray.

■ If an application needs to index on line item data, this can be done with nested
tables but not with varrays.

Note: The PL/SQL to implement the comparison method appears
in "The compareCustOrders Method" on page A-14.

See Also:

■ Chapter 2, "Basic Components of Oracle Objects" on page 2-1
for more information about map and order methods

■ Oracle Database PL/SQL Language Reference for details about
how to use pragma declarations

Implementing the Schema on the Object-Relational Model

A-12 Oracle Database Object-Relational Developer's Guide

■ The order in which line items are stored is probably not important, and a query
can order them by line item number when necessary.

■ There is no practical upper bound on the number of line items on a purchase
order. Using a varray requires specifying an arbitrary upper bound on the number
of elements.

The following statement defines the object type PurchaseOrder_objtyp:

Example A–21 Creating the PurchaseOrder_objtyp Object

CREATE TYPE PurchaseOrder_objtyp AUTHID CURRENT_USER AS OBJECT (
 PONo NUMBER,
 Cust_ref REF Customer_objtyp,
 OrderDate DATE,
 ShipDate DATE,
 LineItemList_ntab LineItemList_ntabtyp,
 ShipToAddr_obj Address_objtyp,

 MAP MEMBER FUNCTION
 getPONo RETURN NUMBER,

 MEMBER FUNCTION
 sumLineItems RETURN NUMBER
);
/

Instances of type PurchaseOrder_objtyp are objects representing purchase orders.
They have six attributes, including a REF to Customer_objtyp, an Address_
objtyp object, and a nested table of type LineItemList_ntabtyp, which is based
on type LineItem_objtyp. PONo is the primary key and Cust_ref is a foreign key.

Objects of type PurchaseOrder_objtyp have two methods: getPONo and
sumLineItems. One, getPONo, is a map method, one of the two kinds of comparison
methods. A map method returns the relative position of a given record within the
order of records within the object. So, whenever Oracle needs to compare two
PurchaseOrder_objtyp objects, it implicitly calls the getPONo method to do so.

The two pragma declarations provide information to PL/SQL about what sort of
access the two methods need to the database.

The statement does not include the actual PL/SQL programs implementing the
methods getPONo and sumLineItems. Those appear in "Method Definitions" on
page A-12.

Method Definitions
If a type has no methods, its definition consists just of a CREATE TYPE statement.
However, for a type that has methods, you must also define a type body to complete
the definition of the type. You do this with a CREATE TYPE BODY statement. As with
CREATE TYPE, you can include the words OR REPLACE. You must include this phrase
if you are replacing an existing type body with a new one, to change the methods.

The following statement defines the body of the type PurchaseOrder_objtyp. The
statement supplies the PL/SQL programs that implement the type's methods:

Example A–22 Creating the PurchaseOrder_objtyp Type Body

CREATE OR REPLACE TYPE BODY PurchaseOrder_objtyp AS

MAP MEMBER FUNCTION getPONo RETURN NUMBER is

Implementing the Schema on the Object-Relational Model

Sample Application Using Object-Relational Features A-13

 BEGIN
 RETURN PONo;
 END;

MEMBER FUNCTION sumLineItems RETURN NUMBER is
 i INTEGER;
 StockVal StockItem_objtyp;
 Total NUMBER := 0;

 BEGIN
 FOR i in 1..SELF.LineItemList_ntab.COUNT LOOP
 UTL_REF.SELECT_OBJECT(LineItemList_ntab(i).Stock_ref,StockVal);
 Total := Total + SELF.LineItemList_ntab(i).Quantity * StockVal.Price;
 END LOOP;
 RETURN Total;
 END;
END;
/

The getPONo Method
The getPONo method simply returns the value of the PONo attribute—namely, the
purchase order number—of whatever instance of the type PurchaseOrder_objtyp
that calls the method. Such get methods allow you to avoid reworking code that uses
the object if its internal representation changes.

The sumLineItems Method
The sumLineItems method uses a number of object-relational features:

■ As already noted, the basic function of the sumLineItems method is to return the
sum of the values of the line items of its associated PurchaseOrder_objtyp
object. The keyword SELF, which is implicitly created as a parameter to every
function, lets you refer to that object.

■ The keyword COUNT gives the count of the number of elements in a PL/SQL table
or array. Here, in combination with LOOP, the application iterates through all the
elements in the collection — in this case, the items of the purchase order. In this
way SELF.LineItemList_ntab.COUNT counts the number of elements in the
nested table that match the LineItemList_ntab attribute of the
PurchaseOrder_objtyp object, here represented by SELF.

■ A method from package UTL_REF is used in the implementation. The UTL_REF
methods are necessary because Oracle does not support implicit dereferencing of
REFs within PL/SQL programs. The UTL_REF package provides methods that
operate on object references. Here, the SELECT_OBJECT method is called to obtain
the StockItem_objtyp object corresponding to the Stock_ref.

The AUTHID CURRENT_USER syntax specifies that the PurchaseOrder_objtyp is
defined using invoker rights: the methods are executed under the rights of the current
user, not under the rights of the user who defined the type.

■ The PL/SQL variable StockVal is of type StockItem_objtyp. The UTL_
REF.SELECT_OBJECT sets it to the object whose reference is the following:

(LineItemList_ntab(i).Stock_ref)

This object is the actual stock item referred to in the currently selected line item.

■ Having retrieved the stock item in question, the next step is to compute its cost.
The program refers to the stock item's cost as StockVal.Price, the Price
attribute of the StockItem_objtyp object. But to compute the cost of the item,

Implementing the Schema on the Object-Relational Model

A-14 Oracle Database Object-Relational Developer's Guide

you also need to know the quantity of items ordered. In the application, the term
LineItemList_ntab(i).Quantity represents the Quantity attribute of the
currently selected LineItem_objtyp object.

The remainder of the method program is a loop that sums the values of the line items.
The method returns the total.

The compareCustOrders Method
The following statement defines the compareCustOrders method in the type body
of the Customer_objtyp object type:

Example A–23 Creating the Customer_objtyp Type Body

CREATE OR REPLACE TYPE BODY Customer_objtyp AS
 ORDER MEMBER FUNCTION
 compareCustOrders (x IN Customer_objtyp) RETURN INTEGER IS
 BEGIN
 RETURN CustNo - x.CustNo;
 END;
END;
/

As mentioned earlier, the order method compareCustOrders operation compares
information about two customer orders. It takes another Customer_objtyp object as
an input argument and returns the difference of the two CustNo numbers. The return
value is:

■ A negative number if its own object has a smaller value of CustNo

■ A positive number if its own object has a larger value of CustNo

■ zero if the two objects have the same value of CustNo—in which case both orders
are associated with the same customer.

Whether the return value is positive, negative, or zero signifies the relative order of the
customer numbers. For example, perhaps lower numbers are created earlier in time
than higher numbers. If either of the input arguments (SELF and the explicit
argument) to an ORDER method is NULL, Oracle does not call the ORDER method and
simply treats the result as NULL.

We have now defined all of the object types for the object-relational version of the
purchase order schema. We have not yet created any instances of these types to contain
actual purchase order data, nor have we created any tables in which to store such data.
We show how to do this in the next section.

Creating Object Tables
Creating an object type is not the same as creating a table. Creating a type merely
defines a logical structure; it does not create storage. To use an object-relational
interface to your data, you must create object types whether you intend to store your
data in object tables or leave it in relational tables and access it through object views.
Object views and object tables alike presuppose object types: an object table or object
view is always a table or view of a certain object type. In this respect, it is like a
relational column, which always has a specified data type.

See Also: Chapter 6, "Applying an Object Model to Relational
Data" for a discussion of object views

Implementing the Schema on the Object-Relational Model

Sample Application Using Object-Relational Features A-15

Like a relational column, an object table can contain rows of just one kind of thing,
namely, object instances of the same declared type as the table. (And, if the table is
substitutable, it can contain instances of subtypes of its declared type as well.)

Each row in an object table is a single object instance. So, in one sense, an object table
has, or consists of, only a single column of the declared object type. But this is not as
different as it may seem from the case with relational tables. Each row in a relational
table theoretically represents a single entity as well—for example, a customer, in a
relational Customers table. The columns of a relational table store data for attributes
of this entity.

Similarly, in an object table, attributes of the object type map to columns that can be
inserted into and selected from. The major difference is that, in an object table, data is
stored—and can be retrieved—in the structure defined by the table's type, making it
possible for you to retrieve an entire, multilevel structure of data with a very simple
query.

The Object Table Customer_objtab
The following statement defines an object table Customer_objtab to hold objects of
type Customer_objtyp:

Example A–24 Creating the Customer_objtab Table

CREATE TABLE Customer_objtab OF Customer_objtyp (CustNo PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

Unlike relational tables, when you create an object table, you specify a data type for it,
namely, the type of objects it will contain.

The table has a column for each attribute of Customer_objtyp, namely:

CustNo NUMBER /* Primary key */
CustName VARCHAR2(200)
Address_obj Address_objtyp
PhoneList_var PhoneList_vartyp

See Example A–18, "Creating the Address_objtyp Object" on page A-10 and
Example A–17, "Creating the PhoneList_vartyp Type" on page A-10 for the definitions
of those types.

Implementing the Schema on the Object-Relational Model

A-16 Oracle Database Object-Relational Developer's Guide

Figure A–3 Object Relational Representation of Table Customer_objtab

Object Data Types as a Template for Object Tables
Because there is a type Customer_objtyp, you could create numerous object tables
of the same type. For example, you could create an object table Customer_objtab2
also of type Customer_objtyp.

You can introduce variations when creating multiple tables. The statement that created
Customer_objtab defined a primary key constraint on the CustNo column. This
constraint applies only to this object table. Another object table of the same type might
not have this constraint.

Object Identifiers and References
Customer_objtab contains customer objects, represented as row objects. Oracle
allows row objects to be referenceable, meaning that other row objects or relational
rows may reference a row object using its object identifier (OID). For example, a
purchase order row object may reference a customer row object using its object
reference. The object reference is a system-generated value represented by the type
REF and is based on the unique OID of the row object.

Oracle requires every row object to have a unique OID. You may specify the unique
OID value to be system-generated or specify the row object's primary key to serve as
its unique OID. You indicate this when you execute the CREATE TABLE statement by
specifying OBJECT IDENTIFIER IS PRIMARY KEY or OBJECT IDENTIFIER IS
SYSTEM GENERATED. The latter is the default. Using the primary key as the object
identifier can be more efficient in cases where the primary key value is smaller than

Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

CITY

Text
VARCHAR2(200)

STATE

Text
CHAR(2)

ZIP

Number
VARCHAR2(20)

STREET

PK

Text
VARCHAR2(200)

Varray PHONELIST_VAR (of PHONELIST_VARTYP)

(PHONE)

Number
NUMBER

Table CUSTOMER_OBJTAB (of CUSTOMER_OBJTYP)

CUSTNAME

Text
VARCHAR2(200)

ADDRESS_OBJ

Object Type
ADDRESS_OBJTYP

PHONELIST_VAR

Varray
PHONELIST_VARTYP

CUSTNO

PK

Number
NUMBER

Implementing the Schema on the Object-Relational Model

Sample Application Using Object-Relational Features A-17

the default 16 byte system-generated identifier. For our example, the primary key is
used as the row object identifier.

Object Tables with Embedded Objects
Note that the Address_obj column of Customer_objtab contains Address_
objtyp objects. As this shows, an object type may have attributes that are themselves
object types. Object instances of the declared type of an object table are called row
objects because one object instance occupies an entire row of the table. But embedded
objects such as those in the Address_obj column are referred to as column objects.
These differ from row objects in that they do not take up an entire row. Consequently,
they are not referenceable—they cannot be the target of a REF. Also, they can be NULL.

The attributes of Address_objtyp objects are of built-in types. They are scalar rather
than complex (that is, they are not object types with attributes of their own), and so are
called leaf-level attributes to reflect that they represent an end to branching. Columns
for Address_objtyp objects and their attributes are created in the object table
Customer_objtab. You can refer or navigate to these columns using the dot
notation. For example, if you want to build an index on the Zip column, you can refer
to it as Address.Zip.

The PhoneList_var column contains varrays of type PhoneList_vartyp. We
defined each object of type PhoneList_vartyp as a varray of up to 10 telephone
numbers, each represented by a data item of type VARCHAR2. See Example A–17 on
page A-10.

Because each varray of type PhoneList_vartyp can contain no more than 200
characters (10 x 20), plus a small amount of overhead, Oracle stores the varray as a
single data unit in the PhoneList_var column. Oracle stores varrays that do not
exceed 4000 bytes in inline BLOBs, which means that a portion of the varray value
could potentially be stored outside the table.

The Object Table Stock_objtab
The following statement creates an object table for StockItem_objtyp objects:

Example A–25 Creating the Stock_objtab Table

CREATE TABLE Stock_objtab OF StockItem_objtyp (StockNo PRIMARY KEY)
 OBJECT IDENTIFIER IS PRIMARY KEY;

Each row of the table is a StockItem_objtyp object having three numeric attributes:

StockNo NUMBER
Price NUMBER
TaxRate NUMBER

Oracle creates a column for each attribute. The CREATE TABLE statement places a
primary key constraint on the StockNo column and specifies that the primary key be
used as the row object's identifier.

The Object Table PurchaseOrder_objtab
The following statement defines an object table for PurchaseOrder_objtyp objects:

Example A–26 Creating the PurchaseOrder_objtab Table

CREATE TABLE PurchaseOrder_objtab OF PurchaseOrder_objtyp (/* Line 1 */
 PRIMARY KEY (PONo), /* Line 2 */
 FOREIGN KEY (Cust_ref) REFERENCES Customer_objtab) /* Line 3 */

Implementing the Schema on the Object-Relational Model

A-18 Oracle Database Object-Relational Developer's Guide

 OBJECT IDENTIFIER IS PRIMARY KEY /* Line 4 */
 NESTED TABLE LineItemList_ntab STORE AS PoLine_ntab (/* Line 5 */
 (PRIMARY KEY(NESTED_TABLE_ID, LineItemNo)) /* Line 6 */
 ORGANIZATION INDEX COMPRESS) /* Line 7 */
 RETURN AS LOCATOR /* Line 8 */
/

The preceding CREATE TABLE statement creates the PurchaseOrder_objtab object
table. The significance of each line is as follows:

Line 1:
CREATE TABLE PurchaseOrder_objtab OF PurchaseOrder_objtyp (

This line indicates that each row of the table is a PurchaseOrder_objtyp object.
Attributes of PurchaseOrder_objtyp objects are:

PONo NUMBER
Cust_ref REF Customer_objtyp
OrderDate DATE
ShipDate DATE
LineItemList_ntab LineItemList_ntabtyp
ShipToAddr_obj Address_objtyp

See Example A–19, "Creating the Customer_objtyp Object" on page A-10 and
Example A–20, "Creating the LineItemList_ntabtyp Type" on page A-11 for the
definitions of those types.

Figure A–4 Object Relational Representation of Table PurchaseOrder_objtab

Line 2:
PRIMARY KEY (PONo),

Table PURCHASEORDER_OBJTAB (of PURCHASEORDER_OBJTYP)

CUST_REF

Reference
CUSTOMER_
OBJTYP

ORDERDATE

Date
DATE

SHIPDATE

Date
DATE

LINEITEMLIST_NTAB

Nested Table
LINEITEMLIST_
NTABTYP

SHIPTOADDR_OBJ

Object Type
ADDRESS_
OBJTYP

PONO

PK FK

Number
NUMBER

Table CUSTOMER_OBJTAB (of CUSTOMER_OBJTYP)

CUSTNAME

Text
VARCHAR2(200)

ADDRESS_OBJ

Object Type
ADDRESS_OBJTYP

PHONELIST_VAR

Varray
PHONELIST_VARTYP

CUSTNO

PK

Number
NUMBER

MEMBER FUNCTION getPONO RETURN NUMBER
MEMBER FUNCTION SumLineItems RETURN NUMBER

Reference
to a row of
the table

Implementing the Schema on the Object-Relational Model

Sample Application Using Object-Relational Features A-19

This line specifies that the PONo attribute is the primary key for the table.

Line 3:
FOREIGN KEY (Cust_ref) REFERENCES Customer_objtab)

This line specifies a referential constraint on the Cust_ref column. This referential
constraint is similar to those specified for relational tables. When there is no constraint,
the REF column permits you to reference any row object. However, in this case, the
Cust_ref REFs can refer only to row objects in the Customer_objtab object table.

Line 4:
OBJECT IDENTIFIER IS PRIMARY KEY

This line indicates that the primary key of the PurchaseOrder_objtab object table
be used as the row's OID.

Line 5 - 8:
NESTED TABLE LineItemList_ntab STORE AS PoLine_ntab (
 (PRIMARY KEY(NESTED_TABLE_ID, LineItemNo))
 ORGANIZATION INDEX COMPRESS)
 RETURN AS LOCATOR

These lines pertain to the storage specification and properties of the nested table
column, LineItemList_ntab. The rows of a nested table are stored in a separate
storage table. This storage table cannot be directly queried by the user but can be
referenced in DDL statements for maintenance purposes. A hidden column in the
storage table, called the NESTED_TABLE_ID, matches the rows with their
corresponding parent row. All the elements in the nested table belonging to a
particular parent have the same NESTED_TABLE_ID value. For example, all the
elements of the nested table of a given row of PurchaseOrder_objtab have the
same value of NESTED_TABLE_ID. The nested table elements that belong to a
different row of PurchaseOrder_objtab have a different value of NESTED_TABLE_
ID.

In the preceding CREATE TABLE example, Line 5 indicates that the rows of
LineItemList_ntab nested table are to be stored in a separate table (referred to as
the storage table) named PoLine_ntab. The STORE AS clause also permits you to
specify the constraint and storage specification for the storage table. In this example,
Line 7 indicates that the storage table is an index-organized table (IOT). In general,
storing nested table rows in an IOT is beneficial because it provides clustering of rows
belonging to the same parent. The specification of COMPRESS on the IOT saves storage
space because, if you do not specify COMPRESS, the NESTED_TABLE_ID part of the
IOT's key is repeated for every row of a parent row object. If, however, you specify
COMPRESS, the NESTED_TABLE_ID is stored only once for each parent row object.

In Line 6, the specification of NESTED_TABLE_ID and LineItemNo attribute as the
primary key for the storage table serves two purposes: first, it specifies the key for the
IOT; second, it enforces uniqueness of the column LineItemNo of the nested table
within each row of the parent table. By including the LineItemNo column in the key,

See Also: "Nested Table Storage" on page 9-10 for information
about the benefits of organizing a nested table as an IOT, specifying
nested table compression, and for more information about nested
table storage in general

Implementing the Schema on the Object-Relational Model

A-20 Oracle Database Object-Relational Developer's Guide

the statement ensures that the LineItemNo column contains distinct values within
each purchase order.

Line 8 indicates that the nested table, LineItemList_ntab, is returned in the locator
form when retrieved. If you do not specify LOCATOR, the default is VALUE, which
causes the entire nested table to be returned instead of just a locator to it. If a nested
table collection contains many elements, it is inefficient to return the entire nested table
whenever the containing row object or the column is selected.

Specifying that the nested table's locator is returned enables Oracle to send the client
only a locator to the actual collection value. An application can find whether a fetched
nested table is in the locator or value form by calling the OCICollIsLocator or
UTL_COLL.IS_LOCATOR interfaces. Once you know that the locator has been
returned, the application can query using the locator to fetch only the desired subset of
row elements in the nested table. This locator-based retrieval of the nested table rows
is based on the original statement's snapshot, to preserve the value or copy semantics
of the nested table. That is, when the locator is used to fetch a subset of row elements
in the nested table, the nested table snapshot reflects the nested table when the locator
was first retrieved.

Recall the implementation of the sumLineItems method of PurchaseOrder_
objtyp in "Method Definitions" on page A-12. That implementation assumed that the
LineItemList_ntab nested table would be returned as a VALUE. In order to handle
large nested tables more efficiently, and to take advantage of the fact that the nested
table in the PurchaseOrder_objtab is returned as a locator, the sumLineItems
method must be rewritten as follows:

Example A–27 Replacing the PurchaseOrder_objtyp Type Body

CREATE OR REPLACE TYPE BODY PurchaseOrder_objtyp AS

 MAP MEMBER FUNCTION getPONo RETURN NUMBER is
 BEGIN
 RETURN PONo;
 END;

 MEMBER FUNCTION sumLineItems RETURN NUMBER IS
 i INTEGER;
 StockVal StockItem_objtyp;
 Total NUMBER := 0;

 BEGIN
 IF (UTL_COLL.IS_LOCATOR(LineItemList_ntab)) -- check for locator
 THEN
 SELECT SUM(L.Quantity * L.Stock_ref.Price) INTO Total
 FROM TABLE(CAST(LineItemList_ntab AS LineItemList_ntabtyp)) L;
 ELSE
 FOR i in 1..SELF.LineItemList_ntab.COUNT LOOP
 UTL_REF.SELECT_OBJECT(LineItemList_ntab(i).Stock_ref,StockVal);
 Total := Total + SELF.LineItemList_ntab(i).Quantity *
 StockVal.Price;
 END LOOP;
 END IF;
 RETURN Total;
 END;
END;
/

The rewritten sumLineItems method checks whether the nested table attribute,
LineItemList_ntab, is returned as a locator using the UTL_COLL.IS_LOCATOR

Implementing the Schema on the Object-Relational Model

Sample Application Using Object-Relational Features A-21

function. If the condition evaluates to TRUE, the nested table locator is queried using
the TABLE expression.

The querying of the nested table locator results in more efficient processing of the large
line item list of a purchase order. The previous code that iterates over the
LineItemList_ntab is kept to deal with the case where the nested table is returned
as a VALUE.

After the table is created, the ALTER TABLE statement is issued to add the SCOPE FOR
constraint on a REF. The SCOPE FOR constraint on a REF is not allowed in a CREATE
TABLE statement. To specify that Stock_ref can reference only the object table
Stock_objtab, issue the following ALTER TABLE statement on the PoLine_ntab
storage table:

Example A–28 Adding the SCOPE FOR Constraint

ALTER TABLE PoLine_ntab
 ADD (SCOPE FOR (Stock_ref) IS stock_objtab) ;

This statement specifies that the Stock_ref column of the nested table is scoped to
Stock_objtab. This indicates that the values stored in this column must be
references to row objects in Stock_objtab. The SCOPE constraint is different from
the referential constraint in that the SCOPE constraint has no dependency on the
referenced object. For example, any referenced row object in Stock_objtab may be
deleted, even if it is referenced in the Stock_ref column of the nested table. Such a
deletion renders the corresponding reference in the nested table a DANGLING REF.

Figure A–5 Object Relational Representation of Nested Table LineItemList_ntab

Note: The CAST expression is currently required in such TABLE
expressions to tell the SQL compilation engine the actual type of the
collection attribute (or parameter or variable) so that it can compile
the query.

Column LINEITEMLIST_NTAB (of LINEITEMLIST_NTABTYP
 (as table of LINEITEM_OBJTYP))

STOCK_REF

Reference
STOCKITEM_OBJTYP

QUANTITY

Number
NUMBER

DISCOUNT

Number
NUMBER

LINEITEMNO

Number
NUMBER

Table STOCK_OBJTAB (of STOCKITEM_OBJTYP)

PRICE

Number
NUMBER

TAXRATE

Number
NUMBER

STOCKNO

PK

Number
NUMBER

Refers to a row
of the table

Implementing the Schema on the Object-Relational Model

A-22 Oracle Database Object-Relational Developer's Guide

Oracle does not support a referential constraint specification for storage tables. In this
situation, specifying the SCOPE clause for a REF column is useful. In general,
specifying scope or referential constraints for REF columns has several benefits:

■ It saves storage space because it allows Oracle to store just the row object's unique
identifier as the REF value in the column.

■ It enables an index to be created on the storage table's REF column.

■ It allows Oracle to rewrite queries containing dereferences of these REFs as joins
involving the referenced table.

At this point, all of the tables for the purchase order application are in place. The next
section shows how to operate on these tables.

Figure A–6 Object Relational Representation of Table PurchaseOrder_objtab

Inserting Values
Here is how to insert the same data into the object tables that we inserted earlier into
relational tables. Notice how some of the values incorporate calls to the constructors
for object types, to create instances of the types.

Example A–29 Inserting Values in Stock_objtab

INSERT INTO Stock_objtab VALUES(1004, 6750.00, 2) ;
INSERT INTO Stock_objtab VALUES(1011, 4500.23, 2) ;
INSERT INTO Stock_objtab VALUES(1534, 2234.00, 2) ;
INSERT INTO Stock_objtab VALUES(1535, 3456.23, 2) ;

Example A–30 Inserting Values in Customer_objtab

INSERT INTO Customer_objtab
 VALUES (
 1, 'Jean Nance',

Table PURCHASEORDER_OBJTAB (of PURCHASEORDER_OBJTYP)

CUST_REF

Reference
CUSTOMER_
OBJTYP

ORDERDATE

Date
DATE

SHIPDATE

Date
DATE

LINEITEMLIST_NTAB

Nested Table
LINEITEMLIST_
NTABTYP

SHIPTOADDR_OBJ

Object Type
ADDRESS_
OBJTYP

PONO

PK FK

Number
NUMBER

Column Object SHIPTOADDR_OBJ (of ADDR_OBJTYP)

CITY

Text
VARCHAR2(200)

STATE

Text
CHAR(2)

ZIP

Number
VARCHAR2(20)

STREET

Text
VARCHAR2(200)

MEMBER FUNCTION getPONO RETURN NUMBER
MEMBER FUNCTION SumLineItems RETURNNUMBER

Column Object
of the defined type

Implementing the Schema on the Object-Relational Model

Sample Application Using Object-Relational Features A-23

 Address_objtyp('2 Avocet Drive', 'Redwood Shores', 'CA', '95054'),
 PhoneList_vartyp('415-555-0102')
) ;

INSERT INTO Customer_objtab
 VALUES (
 2, 'John Nike',
 Address_objtyp('323 College Drive', 'Edison', 'NJ', '08820'),
 PhoneList_vartyp('609-555-0190','201-555-0140')
) ;

Example A–31 Inserting Values in PurchaseOrder_objtab

INSERT INTO PurchaseOrder_objtab
 SELECT 1001, REF(C),
 SYSDATE, '10-MAY-1999',
 LineItemList_ntabtyp(),
 NULL
 FROM Customer_objtab C
 WHERE C.CustNo = 1 ;

The preceding statement constructs a PurchaseOrder_objtyp object with the
following attributes:

PONo 1001
Cust_ref REF to customer number 1
OrderDate SYSDATE
ShipDate 10-MAY-1999
LineItemList_ntab an empty LineItem_ntabtyp
ShipToAddr_obj NULL

The statement uses a query to construct a REF to the row object in the Customer_
objtab object table that has a CustNo value of 1.

The following statement uses a TABLE expression to identify the nested table as the
target for the insertion, namely the nested table in the LineItemList_ntab column
of the row object in the PurchaseOrder_objtab table that has a PONo value of 1001.

Example A–32 Inserting Values in LineItemList_ntab

INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 1001
)
 SELECT 01, REF(S), 12, 0
 FROM Stock_objtab S
 WHERE S.StockNo = 1534 ;

The preceding statement inserts a line item into the nested table identified by the
TABLE expression. The inserted line item contains a REF to the row object with a
StockNo value of 1534 in the object table Stock_objtab.

The following statements follow the same pattern as the previous ones:

Example A–33 Inserting Values in PurchaseOrder_objtab and LineItemList_ntab

INSERT INTO PurchaseOrder_objtab
 SELECT 2001, REF(C),
 SYSDATE, '20-MAY-1997',
 LineItemList_ntabtyp(),

Implementing the Schema on the Object-Relational Model

A-24 Oracle Database Object-Relational Developer's Guide

 Address_objtyp('55 Madison Ave','Madison','WI','53715')
 FROM Customer_objtab C
 WHERE C.CustNo = 2 ;

INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 1001
)
 SELECT 02, REF(S), 10, 10
 FROM Stock_objtab S
 WHERE S.StockNo = 1535 ;

INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 2001
)
 SELECT 10, REF(S), 1, 0
 FROM Stock_objtab S
 WHERE S.StockNo = 1004 ;

INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 2001
)
 VALUES(11, (SELECT REF(S)
 FROM Stock_objtab S
 WHERE S.StockNo = 1011), 2, 1) ;

Querying
The following query statement implicitly invokes a comparison method. It shows how
Oracle orders objects of type PurchaseOrder_objtyp using that type's comparison
method:

Example A–34 Query Purchase Orders

SELECT p.PONo
 FROM PurchaseOrder_objtab p
 ORDER BY VALUE(p) ;

Oracle invokes the map method getPONo for each PurchaseOrder_objtyp object
in the selection. Because that method returns the object's PONo attribute, the selection
produces a list of purchase order numbers in ascending numerical order.

The following queries correspond to the queries executed under the relational model.

Example A–35 Query Customer and Line Item Data for Purchase Order 1001

SELECT DEREF(p.Cust_ref), p.ShipToAddr_obj, p.PONo,
 p.OrderDate, LineItemList_ntab
 FROM PurchaseOrder_objtab p
 WHERE p.PONo = 1001 ;

Example A–36 Query Total Value of Each Purchase Order

SELECT p.PONo, p.sumLineItems()
 FROM PurchaseOrder_objtab p ;

Implementing the Schema on the Object-Relational Model

Sample Application Using Object-Relational Features A-25

Example A–37 Query Purchase Order and Line Item Data for Stock Item 1004

SELECT po.PONo, po.Cust_ref.CustNo,
 CURSOR (
 SELECT *
 FROM TABLE (po.LineItemList_ntab) L
 WHERE L.Stock_ref.StockNo = 1004
)
 FROM PurchaseOrder_objtab po ;

The preceding query returns a nested cursor for the set of LineItem_obj objects
selected from the nested table. The application can fetch from the nested cursor to get
the individual LineItem_obj objects. The query can also be expressed by unnesting
the nested set with respect to the outer result:

SELECT po.PONo, po.Cust_ref.CustNo, L.*
 FROM PurchaseOrder_objtab po, TABLE (po.LineItemList_ntab) L
 WHERE L.Stock_ref.StockNo = 1004 ;

The preceding query returns the result set as a flattened form (or First Normal Form).
This type of query is useful when accessing Oracle collection columns from relational
tools and APIs, such as ODBC. In the preceding unnesting example, only the rows of
the PurchaseOrder_objtab object table that have any LineItemList_ntab rows
are returned. To fetch all rows of the PurchaseOrder_objtab table, regardless of the
presence of any rows in their corresponding LineItemList_ntab, then the (+)
operator is required:

SELECT po.PONo, po.Cust_ref.CustNo, L.*
 FROM PurchaseOrder_objtab po, TABLE (po.LineItemList_ntab) (+) L
 WHERE L.Stock_ref.StockNo = 1004 ;

In Example A–38, the request requires querying the rows of all LineItemList_ntab
nested tables of all PurchaseOrder_objtab rows. Again, unnesting is required:

Example A–38 Query Average Discount across all Line Items of all Purchase Orders

SELECT AVG(L.DISCOUNT)
 FROM PurchaseOrder_objtab po, TABLE (po.LineItemList_ntab) L ;

Deleting
The following example has the same effect as the two deletions needed in the
relational case shown in Example A–13 on page A-4. In Example A–39, Oracle deletes
the entire purchase order object, including its line items, in a single SQL operation. In
the relational case, line items for the purchase order must be deleted from the line
items table, and the purchase order must be separately deleted from the purchase
orders table.

Example A–39 Delete Purchase Order 1001 in an Object-Relational Model

DELETE
 FROM PurchaseOrder_objtab
 WHERE PONo = 1001 ;

Note: If you are performing the SQL statements in this sample, do
not execute the DELETE statement in Example A–39 because the
purchase order is needed in the following examples.

Evolving Object Types

A-26 Oracle Database Object-Relational Developer's Guide

Evolving Object Types
Even a completed, fully built application tends to be a work in progress. Sometimes
requirements change, forcing a change to an underlying object model or schema to
adapt it to new circumstances, and sometimes there are ways to improve an object
model so that it does a better job of what it was originally intended to do.

Suppose that, after living with our object-relational application for a while, we
discover some ways that we could improve the design. In particular, suppose that we
discover that users almost always want to see a history of purchases when they bring
up the record for a customer. To do this with the present object model requires a join
on the two tables Customer_objtab and PurchaseOrder_objtab that hold
information about customers and purchase orders. We decide that a better design
would be to provide access to data about related purchase orders directly from the
customers table.

One way to do this is to change the Customer_objtyp so that information about a
customer's purchase orders is included right in the object instance that represents that
customer. In other words, we want to add an attribute for purchase order information
to Customer_objtyp. To hold information about multiple purchase orders, the
attribute must be a collection type—a nested table.

Adding an attribute is one of several ways that you can alter, or evolve, an object type.
When you evolve a type, Oracle applies your changes to the type itself and to all its
dependent schema objects, including subtypes of the type, other object types that have
the altered type as an attribute, and tables and columns of the altered type.

To change Customer_objtyp to add an attribute for a nested table of purchase
orders, several steps are needed:

1. Create a new type for a nested table of purchase orders

2. Alter Customer_objtyp to add a new attribute of the new type

3. In the Customer_objtab object table, name and scope the storage tables for the
newly added nested tables

– Upgrading the Customer_objtab object table for the new attribute actually
adds two levels of nested tables, one inside the other, because a purchase order
itself contains a nested table of line items.

– Both the purchase orders nested table and the line items nested table need to
be scoped so that they can contain primary key-based REFs. More on this in
the next section.

Figure A–7 Nested Tables in the Customer Object Type

When we are done with the preceding steps, information about customers and
purchase orders will be more logically related in our model, and we will be able to
query the customers table for all information about customers, purchase orders, and

Purchase OrderN

Customer

1

Line ItemN

1

Evolving Object Types

Sample Application Using Object-Relational Features A-27

line items. We will also be able to insert a new purchase order for a new customer with
a single INSERT statement on the customers table.

Adding an Attribute to the Customer Type
Before we can add a nested table of purchase orders as an attribute of Customer_
objtyp, we need to define a type for this sort of nested table. The following statement
does this:

Example A–40 Create PurchaseOrderList_ntabtyp

CREATE TYPE PurchaseOrderList_ntabtyp AS TABLE OF PurchaseOrder_objtyp;
/

Now we can use an ALTER TYPE statement to add an attribute of this type to
Customer_objtyp:

Example A–41 Alter Customer_objtyp

ALTER TYPE Customer_objtyp
 ADD ATTRIBUTE (PurchaseOrderList_ntab PurchaseOrderList_ntabtyp)
 CASCADE;

If a type being altered has dependent types or tables, an ALTER TYPE statement on the
type needs to specify either CASCADE or INVALIDATE to say how to apply the change
to the dependents.

■ CASCADE performs validation checks on the dependents before applying a type
change. These checks confirm that the change does not entail doing something
illegal, such as dropping an attribute that is being used as a partitioning key of a
table. If a dependent fails validation, the type change aborts. On the other hand, if
all dependents validate successfully, the system goes ahead with whatever
changes to metadata and data are required to propagate the change to the type.
These can include automatically adding and dropping columns, creating storage
tables for nested tables, and so forth.

■ The INVALIDATE option skips the preliminary validation checks and directly
applies the type change to dependents. These are then validated the next time that
they are accessed. Altering a type this way saves the time required to do the
validations, but if a dependent table cannot be validated later when someone tries
to access it, its data cannot be accessed until the table is made to pass the
validation.

We need to add scope for a REF column in each of the new nested tables of purchase
orders and line items that are added to the Customer_objtab table. For convenience,
first we rename the new tables from system-generated names to recognizable names.
Then, using the names we have given them, we can alter the storage tables to add
scope for their REF columns.

The reason we must do all this is that, in order for a column to store REFs to objects in
a table that bases its object identifiers on the primary key, the column must be scoped
to that table or have a referential constraint placed on it. Scoping a column to a
particular table declares that all REFs in the column are REFs to objects in that table.
This declaration is necessary because a primary key-based object identifier is
guaranteed unique only in the context of the particular table: it may not be unique
across all tables. If you try to insert a primary key-based REF, or user-defined REF, into
an unscoped column, you will get an error similar to:

cannot INSERT object view REF or user-defined REF

Evolving Object Types

A-28 Oracle Database Object-Relational Developer's Guide

Line items contain a REF to objects in table Stock_objtab, whose object identifier
uses the table's primary key. This is why we had to add scope for the REF column in
the storage table for the line items nested table in table PurchaseOrder_objtab
after we created that table. Now we have to do it again for the new nested table of line
items in table Customer_objtab.

We have to do the same again for the new nested table of purchase orders we are
adding in table Customer_objtab: a purchase order references a customer in the
table Customer_objtab, and object identifiers in this table are primary-key based as
well.

Using the following statement, we determine the names of the system-generated tables
so they can be renamed:

SELECT table_name, parent_table_name, parent_table_column FROM user_nested_tables;

The output is similar to the following:

TABLE_NAME PARENT_TABLE_NAME PARENT_TABLE_COLUMN
----------------------------- ----------------------------- ----------------------
SYSNTQOFArJyBTHu6iOMMKU4wHw== CUSTOMER_OBJTAB PURCHASEORDERLIST_NTAB
POLINE_NTAB PURCHASEORDER_OBJTAB LINEITEMLIST_NTAB
SYSNTZqu6IQItR++UAtgz1rMB8A== SYSNTQOFArJyBTHu6iOMMKU4wHw== LINEITEMLIST_NTAB

For convenience, rename the system-generated nested tables to appropriate names. For
example, using the system-generated names in the previous sample output:

ALTER TABLE "SYSNTQOFArJyBTHu6iOMMKU4wHw==" RENAME TO PO_List_nt;
ALTER TABLE "SYSNTZqu6IQItR++UAtgz1rMB8A==" RENAME TO Items_List_nt;

The process of renaming the system-generated nested tables can also be done
automatically with the following PL/SQL procedure:

DECLARE
 nested_table_1 VARCHAR2(30);
 nested_table_2 VARCHAR2(30);
 cust_obj_table VARCHAR2(30) := 'CUSTOMER_OBJTAB';
BEGIN
 EXECUTE IMMEDIATE ' SELECT table_name FROM user_nested_tables
 WHERE parent_table_name = :1 ' INTO nested_table_1 USING cust_obj_table;
 EXECUTE IMMEDIATE ' SELECT table_name FROM user_nested_tables
 WHERE parent_table_name = :1 ' INTO nested_table_2 USING nested_table_1;
 EXECUTE IMMEDIATE 'ALTER table "'|| nested_table_1 ||'" RENAME TO PO_List_nt';
 EXECUTE IMMEDIATE 'ALTER table "'|| nested_table_2 ||'" RENAME TO Items_List_nt';
END;
/

The new storage tables are named PO_List_nt and Items_List_nt. The following
statements scope the REF columns in these tables to specific tables:

Example A–42 Add SCOPE for REF to Nested Tables

ALTER TABLE PO_List_nt ADD (SCOPE FOR (Cust_Ref) IS Customer_objtab);
ALTER TABLE Items_List_nt ADD (SCOPE FOR (Stock_ref) IS Stock_objtab);

There is just one more thing to do before inserting purchase orders for customers in
Customer_objtab. An actual nested table of PurchaseOrderList_ntabtyp must
be instantiated for each customer in the table.

When a column is added to a table for a new attribute, column values for existing rows
are initialized to NULL. This means that each existing customer's nested table of

Evolving Object Types

Sample Application Using Object-Relational Features A-29

purchase orders is atomically NULL—there is no actual nested table there, not even an
empty one. Until we instantiate a nested table for each customer, attempts to insert
purchase orders will get an error similar to:

reference to NULL table value

The following statement prepares the column to hold purchase orders by updating
each row to contain an actual nested table instance:

Example A–43 Update Customer_objtab

UPDATE Customer_objtab c
 SET c.PurchaseOrderList_ntab = PurchaseOrderList_ntabtyp();

In the preceding statement, PurchaseOrderList_ntabtyp() is a call to the nested
table type's constructor method. This call, with no purchase orders specified, creates
an empty nested table.

Working with Multilevel Collections
At this point, we have evolved the type Customer_objtyp to add a nested table of
purchase orders, and we have set up the table Customer_objtab so that it is ready to
store purchase orders in the nested table. Now we are ready to insert purchase orders
into Customer_objtab.

There are two purchase orders already in table PurchaseOrder_objtab. The
following two statements copy these into Customer_objtab:

Example A–44 Insert Purchase Orders into Customer_objtab

INSERT INTO TABLE (
 SELECT c.PurchaseOrderList_ntab
 FROM Customer_objtab c
 WHERE c.CustNo = 1
)
 SELECT VALUE(p)
 FROM PurchaseOrder_objtab p
 WHERE p.Cust_Ref.CustNo = 1;

INSERT INTO TABLE (
 SELECT c.PurchaseOrderList_ntab
 FROM Customer_objtab c
 WHERE c.CustNo = 2
)
 SELECT VALUE(p)
 FROM PurchaseOrder_objtab p
 WHERE p.Cust_Ref.CustNo = 2;

Inserting into Nested Tables
Each of the preceding INSERT statements has two main parts: a TABLE expression that
specifies the target table of the insert operation, and a SELECT that gets the data to be
inserted. The WHERE clause in each part picks out the customer object to receive the
purchase orders (in the TABLE expression) and the customer whose purchase orders
are to be selected (in the subquery that gets the purchase orders).

The WHERE clause in the subquery uses dot notation to navigate to the CustNo
attribute: p.Cust_Ref.CustNo. Note that a table alias p is required whenever you
use dot notation. To omit it and say instead Cust_Ref.CustNo would produce an
error.

Evolving Object Types

A-30 Oracle Database Object-Relational Developer's Guide

Another thing to note about the dot notation in this WHERE clause is that we are able to
navigate to the CustNo attribute of a customer right through the Cust_Ref REF
attribute of a purchase order. SQL (though not PL/SQL) implicitly dereferences a REF
used with the dot notation in this way.

The TABLE expression in the first part of the INSERT statement tells the system to treat
the collection returned by the expression as a table. The expression is used here to
select the nested table of purchase orders for a particular customer as the target of the
insert.

In the second part of the INSERT statement, the VALUE() function returns selected
rows as objects. In this case, each row is a purchase order object, complete with its own
collection of line items. Purchase order rows are selected from one table of type
PurchaseOrder_objtyp for insertion into another table of that type.

The preceding INSERT statements use the customer-reference attribute of
PurchaseOrder_objtyp to identify the customer to whom each of the existing
purchase orders belongs. However, now that all the old purchase orders are copied
from the purchase orders table into the upgraded Customer_objtab, this
customer-reference attribute of a purchase order is obsolete. Now purchase orders are
stored right in the customer object itself.

The following ALTER TYPE statement evolves PurchaseOrder_objtyp to drop the
customer-reference attribute. The statement also drops the ShipToAddr_obj attribute
as redundant, assuming that the shipping address is always the same as the customer
address.

Example A–45 Alter PurchaseOrder_objtyp

ALTER TYPE PurchaseOrder_objtyp
 DROP ATTRIBUTE Cust_ref,
 DROP ATTRIBUTE ShipToAddr_obj
 CASCADE;

This time we were able to use the CASCADE option to let the system perform
validations and make all necessary changes to dependent types and tables.

Inserting a New Purchase Order with Line Items
The previous INSERT example showed how to use the VALUE() function to select and
insert into the nested table of purchase orders an existing purchase order object
complete with its own nested table of line items. The following example shows how to
insert a new purchase order that has not already been instantiated as a purchase order
object. In this case, the purchase order's nested table of line items must be instantiated,
as well as each line item object with its data. Line numbers are shown on the left for
reference.

Example A–46 Insert into LineItemList_ntabtyp with VALUE()

INSERT INTO TABLE (/* Line 1 */
 SELECT c.PurchaseOrderList_ntab /* Line 2 */
 FROM Customer_objtab c /* Line 3 */
 WHERE c.CustName = 'John Nike' /* Line 4 */
) /* Line 5 */
 VALUES (1020, SYSDATE, SYSDATE + 1, /* Line 6 */
 LineItemList_ntabtyp(/* Line 7 */
 LineItem_objtyp(1, MAKE_REF(Stock_objtab, 1004), 1, 0), /* Line 8 */
 LineItem_objtyp(2, MAKE_REF(Stock_objtab, 1011), 3, 5), /* Line 9 */
 LineItem_objtyp(3, MAKE_REF(Stock_objtab, 1535), 2, 10) /* Line 10 */
) /* Line 11 */

Evolving Object Types

Sample Application Using Object-Relational Features A-31

); /* Line 12 */

Lines 1-5 use a TABLE expression to select the nested table to insert into—namely, the
nested table of purchase orders for customer John Nike.

The VALUES clause (lines 6-12) contains a value for each attribute of the new purchase
order, namely:

PONo
OrderDate
ShipDate
LineItemList_ntab

Line 6 of the INSERT statement specifies values for the three purchase order attributes
PONo, OrderDate, and ShipDate.

Only attribute values are given; no purchase order constructor is specified. You do not
need to explicitly specify a purchase order constructor to instantiate a purchase order
instance in the nested table because the nested table is declared to be a nested table of
purchase orders. If you omit a purchase order constructor, the system instantiates a
purchase order automatically. You can, however, specify the constructor if you want to,
in which case the VALUES clause will look like this:

INSERT INTO TABLE (
 SELECT c.PurchaseOrderList_ntab
 FROM Customer_objtab c
 WHERE c.CustName = 'John Nike'
)
VALUES (
 PurchaseOrder_objtyp(1025, SYSDATE, SYSDATE + 1,
 LineItemList_ntabtyp(
 LineItem_objtyp(1, MAKE_REF(Stock_objtab, 1004), 1, 0),
 LineItem_objtyp(2, MAKE_REF(Stock_objtab, 1011), 3, 5),
 LineItem_objtyp(3, MAKE_REF(Stock_objtab, 1535), 2, 10)
)
)
)

Lines 7-11 instantiate and supply data for a nested table of line items. The constructor
method LineItemList_ntabtyp(…) creates an instance of such a nested table that
contains three line items.

The line item constructor LineItem_objtyp() creates an object instance for each
line item. Values for line item attributes are supplied as arguments to the constructor.

The MAKE_REF function creates a REF for the Stock_ref attribute of a line item. The
arguments to MAKE_REF are the name of the stock table and the primary key value of
the stock item there that we want to reference. We can use MAKE_REF here because
object identifiers in the stock table are based on the primary key: if they were not, we
would have to use the REF function in a subquery to get a REF to a row in the stock
table.

Querying Multilevel Nested Tables
You can query a top-level nested table column by naming it in the SELECT list like any
other top-level (as opposed to embedded) column or attribute, but the result is not
very readable. For instance, the following query selects the nested table of purchase
orders for John Nike:

Evolving Object Types

A-32 Oracle Database Object-Relational Developer's Guide

Example A–47 Query Customer_objtab for Customer John Nike

SELECT c.PurchaseOrderList_ntab
 FROM Customer_objtab c
 WHERE CustName = 'John Nike';

The query produces a result similar to the following:

PURCHASEORDERLIST_NTAB(PONO, ORDERDATE, SHIPDATE, LINEITEMLIST_NTAB(LINEITEMNO,
--
PURCHASEORDERLIST_NTABTYP(PURCHASEORDER_OBJTYP(2001, '25-SEP-01', '20-MAY-97', L
INEITEMLIST_NTABTYP(LINEITEM_OBJTYP(10, 00004A038A00468ED552CE6A5803ACE034080020
B8C8340000001426010001000100290000000000090600812A00078401FE0000000B03C20B050000
...

For humans, at least, you probably want to display the instance data in an unnested
form and not to show the REFs at all. TABLE expressions—this time in the FROM clause
of a query—can help you do this.

For example, the query in Example A–48 selects the PO number, order date, and
shipdate for all purchase orders belonging to John Nike:

Example A–48 Query Customer_objtab Using TABLE Expression

SELECT p.PONo, p.OrderDate, p.Shipdate
 FROM Customer_objtab c, TABLE(c.PurchaseOrderList_ntab) p
 WHERE c.CustName = 'John Nike';

PONO ORDERDATE SHIPDATE
------- --------- ---------
2001 25-SEP-01 26-SEP-01
1020 25-SEP-01 26-SEP-01

A TABLE expression takes a collection as an argument and can be used like a SQL table
in SQL statements. In the preceding query, listing the nested table of purchase orders
in a TABLE expression in the FROM clause enables us to select columns of the nested
table just as if they were columns of an ordinary table. The columns are identified as
belonging to the nested table by the table alias they use: p. As the example shows, a
TABLE expression in the FROM clause can have its own table alias.

Inside the TABLE expression, the nested table is identified as a column of customer
table Customer_objtab by the customer table's own table alias c. Note that the table
Customer_objtab appears in the FROM clause before the TABLE expression that
refers to it. This ability of a TABLE expressions to make use of a table alias that occurs
to the left of it in the FROM clause is called left correlation. It enables you to daisy-chain
tables and TABLE expressions—including TABLE expressions that make use of the
table alias of another TABLE expression. In fact, this is how you are able to select
columns of nested tables that are embedded in other nested tables.

Here, for example, is a query that selects information about all line items for PO
number 1020:

Example A–49 Query Customer_objtab for Purchase Order 1020

SELECT p.PONo, i.LineItemNo, i.Stock_ref.StockNo, i.Quantity, i.Discount
 FROM Customer_objtab c, TABLE(c.PurchaseOrderList_ntab) p,
 TABLE(p.LineItemList_ntab) i
 WHERE p.PONo = 1020;

PONO LINEITEMNO STOCK_REF.STOCKNO QUANTITY DISCOUNT

Evolving Object Types

Sample Application Using Object-Relational Features A-33

----- ---------- ----------------- ---------- ----------
1020 1 1004 1 0
1020 2 1011 3 5
1020 3 1535 2 10

The query uses two TABLE expressions, the second referring to the first. Line item
information is selected from the inner nested table that belongs to purchase order
number 1020 in the outer nested table.

Notice that no column from the customer table occurs in either the SELECT list or the
WHERE clause. The customer table is listed in the FROM clause solely to provide a
starting point from which to access the nested tables.

Here is a variation on the preceding query. This version shows that you can use the *
wildcard to specify all columns of a TABLE expression collection:

SELECT p.PONo, i.*
 FROM Customer_objtab c, TABLE(c.PurchaseOrderList_ntab) p,
 TABLE(p.LineItemList_ntab) i
 WHERE p.PONo = 1020;

Type Inheritance and Substitutable Columns
Suppose that we deal with a lot of our larger, regular customers through an account
manager. We would like to add a field for the ID of the account manager to the
customer record for these customers.

Earlier, when we wanted to add an attribute for a nested table of purchase orders, we
evolved the customer type itself. We could do that again to add an attribute for
account manager ID, or we could create a subtype of the customer type and add the
attribute only in the subtype. Which should we do?

To make this kind of decision, you need to consider whether the proposed new
attribute can be meaningfully and usefully applied to all instances of the base type—to
all customers, in other words—or only to an identifiable subclass of the base type.

All customers have purchase orders, so it was appropriate to alter the type itself to add
an attribute for them. But not all customers have an account manager; in fact, it
happens that only our corporate customers do. So, instead of evolving the customer
type to add an attribute that will not be meaningful for customers in general, it makes
more sense to create a new subtype for the special kind of customer that we have
identified and to add the new attribute there.

Creating a Subtype
You can create a subtype under a base type only if the base type allows subtypes.
Whether a type can be subtyped depends on the type's FINAL property. By default,
new types are created as FINAL. This means that they are the last of the series and
cannot have subtypes created under them. To create a type that can be subtyped, you
must specify NOT FINAL in the CREATE TYPE statement as we did when we created
the customer type.

You define a subtype by using a CREATE TYPE statement with the UNDER keyword.
The following statement creates a new subtype Corp_Customer_objtyp under
Customer_objtyp. The type is created as NOT FINAL so that it can have subtypes if
we want to add them later.

Example A–50 Create Corp_Customer_objtyp

CREATE TYPE Corp_Customer_objtyp UNDER Customer_objtyp

Evolving Object Types

A-34 Oracle Database Object-Relational Developer's Guide

 (account_mgr_id NUMBER(6)) NOT FINAL;
/

When you use a CREATE TYPE statement to create a new subtype, you list only the
new attributes and methods that you are adding. The subtype inherits all existing
attributes and methods from its base type, so these do not need to be specified. The
new attributes and methods are added after the inherited ones. For example, the
complete list of attributes for the new Corp_Customer_objtyp subtype looks like
this:

CustNo
CustName
Address_obj
Phonelist_var
PurchaseOrderList_ntab
Account_mgr_id

By default, you can store instances of a subtype in any column or object table that is of
any base type of the subtype. This ability to store subtype instances in a base type slot
is called substitutability. Columns and tables are substitutable unless they have been
explicitly declared to be NOT SUBSTITUTABLE. The system automatically adds new
columns for subtype attributes and another, hidden column for the type ID of the
instance stored in each row.

Actually, it is possible to create a subtype of a FINAL type, but first you must use an
ALTER TYPE statement to evolve the type from a FINAL type to a NOT FINAL one. If
you want existing columns and tables of the altered type to be able to store instances
of new subtypes, specify the CASCADE option CONVERT TO SUBSTITUTABLE in the
ALTER TYPE statement. See "Type Evolution" on page 8-6.

Inserting Subtypes
If a column or object table is substitutable, you can insert into it not only instances of
the declared type of the column or table but also instances of any subtype of the
declared type. In the case of table Customer_objtab, this means that the table can be
used to store information about all kinds of customers, both ordinary and corporate.
However, there is one important difference in the way information is inserted for a
subtype: you must explicitly specify the subtype's constructor. Use of the constructor is
optional only for instances of the declared type of the column or table.

For example, the following statement inserts a new ordinary customer, William Kidd.

Example A–51 Insert Data for Ordinary Customer

INSERT INTO Customer_objtab
 VALUES (
 3, 'William Kidd',
 Address_objtyp('43 Harbor Drive', 'Redwood Shores', 'CA', '95054'),
 PhoneList_vartyp('650-555-0188'),
 PurchaseOrderList_ntabtyp()
);

The VALUES clause contains data for each Customer_objtyp attribute but omits the
Customer_objtyp constructor. The constructor is optional here because the declared
type of the table is Customer_objtyp. For the nested table attribute, the constructor
PurchaseOrderList_ntabtyp() creates an empty nested table, but no data is
specified for any purchase orders.

Evolving Object Types

Sample Application Using Object-Relational Features A-35

Here is a statement that inserts a new corporate customer in the same table. Note the
use of the constructor Corp_Customer_objtyp() and the extra data value 531 for
the account manager ID:

Example A–52 Insert Data for Corporate Customer

INSERT INTO Customer_objtab
 VALUES (
 Corp_Customer_objtyp(-- Subtype requires a constructor
 4, 'Edward Teach',
 Address_objtyp('65 Marina Blvd', 'San Francisco', 'CA', '94777'),
 PhoneList_vartyp('415-555-0198', '415-555-0199'),
 PurchaseOrderList_ntabtyp(), 531
)
);

The following statements insert a purchase order for each of the two new customers.
Unlike the statements that insert the new customers, the two statements that insert
purchase orders are structurally the same except for the number of line items in the
purchase orders:

Example A–53 Insert Purchase Order for Ordinary Customer

INSERT INTO TABLE (
 SELECT c.PurchaseOrderList_ntab
 FROM Customer_objtab c
 WHERE c.CustName = 'William Kidd'
)
 VALUES (1021, SYSDATE, SYSDATE + 1,
 LineItemList_ntabtyp(
 LineItem_objtyp(1, MAKE_REF(Stock_objtab, 1535), 2, 10),
 LineItem_objtyp(2, MAKE_REF(Stock_objtab, 1534), 1, 0)
)
);

Example A–54 Insert Purchase Order for Corporate Customer

INSERT INTO TABLE (
 SELECT c.PurchaseOrderList_ntab
 FROM Customer_objtab c
 WHERE c.CustName = 'Edward Teach'
)
 VALUES (1022, SYSDATE, SYSDATE + 1,
 LineItemList_ntabtyp(
 LineItem_objtyp(1, MAKE_REF(Stock_objtab, 1011), 1, 0),
 LineItem_objtyp(2, MAKE_REF(Stock_objtab, 1004), 3, 0),
 LineItem_objtyp(3, MAKE_REF(Stock_objtab, 1534), 2, 0)
)
);

Querying Substitutable Columns
A substitutable column or table can contain data of several data types. This enables
you, for example, to retrieve information about all kinds of customers with a single
query of the customers table. But you can also retrieve information just about a
particular kind of customer, or about a particular attribute of a particular kind of
customer.

The following examples show some useful techniques for getting the information you
want from a substitutable table or column.

Evolving Object Types

A-36 Oracle Database Object-Relational Developer's Guide

The query in Example A–55 uses a WHERE clause that contains an IS OF predicate to
filter out customers that are not some kind of corporate customer. In other words, the
query returns all kinds of corporate customers but does not return instances of any
other kind of customer:

Example A–55 Selecting All Corporate Customers and Their Subtypes

SELECT c.*
 FROM Customer_objtab c
 WHERE VALUE(c) IS OF (Corp_Customer_objtyp);

The query in Example A–56 is similar to the preceding one except that it adds the
ONLY keyword in the IS OF predicate to filter out any subtypes of Corp_Customer_
objtyp. Rows are returned only for instances whose most specific type is Corp_
Customer_objtyp.

Example A–56 Selecting All Corporate Customers with No Subtypes

SELECT p.PONo
 FROM Customer_objtab c, TABLE(c.PurchaseOrderList_ntab) p
 WHERE VALUE(c) IS OF (ONLY Corp_Customer_objtyp);

The query in Example A–57 uses a TABLE expression to get purchase order numbers
(from the nested table of purchase orders). Every kind of customer has this attribute,
but the WHERE clause confines the search just to corporate customers:

Example A–57 Selecting PONo Just for Corporate Customers

SELECT p.PONo
 FROM Customer_objtab c, TABLE(c.PurchaseOrderList_ntab) p
 WHERE VALUE(c) IS OF (Corp_Customer_objtyp);

The query in Example A–58 returns data for account manager ID. This is an attribute
possessed only by the corporate customer subtype: the declared type of the table lacks
it. In the query the TREAT() function is used to cause the system to try to regard or
treat each customer as a corporate customer in order to access the subtype attribute
Account_mgr_id:

Example A–58 Selecting a Subtype Attribute Using the TREAT Function

SELECT CustName, TREAT(VALUE(c) AS Corp_Customer_objtyp).Account_mgr_id
 FROM Customer_objtab c
 WHERE VALUE(c) IS OF (ONLY Corp_Customer_objtyp);

TREAT() is necessary in Example A–58 because Account_mgr_id is not an attribute
of the table's declared type Customer_objtyp. If you simply list the attribute in the
SELECT list as if it were, a query like the one in Example A–59 will return the error
invalid column name error. This is so even with a WHERE clause that excludes all
but instances of Corp_Customer_objtyp. The WHERE clause is not enough here
because it merely excludes rows from the result.

Example A–59 Selecting a Subtype Attribute Without the TREAT Function

-- Following statement returns error, invalid column name for Account_mgr_id
SELECT CustName, Account_mgr_id
 FROM Customer_objtab c
 WHERE VALUE(c) IS OF (ONLY Corp_Customer_objtyp);

Evolving Object Types

Sample Application Using Object-Relational Features A-37

Every substitutable column or object table has an associated hidden type-ID column
that identifies the type of the instance in each row. You can look up the type ID of a
type in the USER_TYPES catalog view.

The function SYS_TYPEID() returns the type ID of a particular instance. The query in
Example A–60 uses SYS_TYPEID() and a join on the USER_TYPES catalog view to
return the type name of each customer instance in the table Customer_objtab:

Example A–60 Discovering the Type of Each Instance

SELECT c.CustName, u.TYPE_NAME
 FROM Customer_objtab c, USER_TYPES u
 WHERE SYS_TYPEID(VALUE(c)) = u.TYPEID;

--------------------------------- ---------------------
Jean Nance CUSTOMER_OBJTYP
John Nike CUSTOMER_OBJTYP
William Kidd CUSTOMER_OBJTYP
Edward Teach CORP_CUSTOMER_OBJTYP

For more information on SYS_TYPEID(), VALUE(), and TREAT(), see "Functions
and Operators Useful with Objects" on page 2-32.

Evolving Object Types

A-38 Oracle Database Object-Relational Developer's Guide

Glossary

atomically null object

An object whose value is NULL is called atomically null. An atomically null object is
different from an object that has null values for all its attributes.

Binary Large Object (BLOB)

A large object data type whose value consists of raw binary data.

character large object (CLOB)

The large object (LOB) data type whose value is composed of character data
corresponding to the database character set.

column object

An object that is stored as a column of a relational database table (as opposed to an
object table). A column object can also be an attribute of another object. A column
object is also known as a stored inline object or an embedded object.

embedded object attribute

An attribute of a column object.

dynamic method dispatch

A method call that is dispatched at run-time to the nearest method implementation
when there are multiple implementations of the same method using overriding.

index-organized table IOT

A table organized by its index.

leaf-level scalar object

An object that is not a collection and is not composed of other types.

leaf-level scalar attribute

An attribute of a leaf-level scalar object.

literal invocation

An invocation where all arguments are literals or invocations of literal methods.
Arguments cannot be variables.

materialized view

A view that contains both the query and its results.
Glossary-1

multilevel collection type
multilevel collection type

Ccollection types whose elements are collection types, either directly or indirectly.

multiset operators

An operator that combines elements of two nested tables into a single nested table.

nested table

An unordered set of data elements of the same data type.

normalize

The process of removing redundancy in data by separating the data into multiple
tables.

object column

A column of user-defined types or abstract data types (ADT)s .

object identifier

Identifier for a row object which can be either system-generated (default) or based on a
primary key using the CREATE TABLE statement.

object instance

An instance of an object type. Also referred to as an object.

object table

A table in which each row represents an object. See row object.

object type

The type of the object instance. It is similar to a record that has methods. Object types
are user-defined.

outer table

A table that contains a nested table.

pinning

Fetching.

PL/SQL

The Oracle procedural language extension to SQL.

polymorphism

Allows handling data types and methods generically using the same interface. In
polymorphic overriding, subtypes redefine a method they have inherited. In
polymorphic overloading, there may be several versions of the same method, with
different parameters.

primary key

The column or set of columns specified in the PRIMARY KEY constraint of a table.

REF

An Oracle built-in data type that encapsulates references to row objects of a specified
object type.
Glossary-2

VARRAY
row object

An object that is stored in a complete row in an object table.

specializing

Adding new attributes or methods to a subtype that the parent supertype does not
have, or changing the implementation of a method or methods.

stored procedure

A PL/SQL block that is stored in the database and can be executed from an
application.

substitutability

A supertype is substitutable if one of its subtypes can substitute or stand in for it in a
variable or column whose declared type is the supertype.

type evolution

The modification of a subtype of a type, typically using an ALTER statement.

VARRAY

An ordered set of data elements, that are of the same data type or a subtype of the
declared data type.
Glossary-3

VARRAY
Glossary-4

Index-1

Index

A
Active Server Pages, 4-8
ActiveX, 4-8
ADMIN OPTION

with EXECUTE ANY TYPE, 7-2
aggregate functions

See user-defined aggregate functions
aliases

required for tables, 2-6
ALTER ANY TYPE privilege, 7-1

See also privileges
ALTER TABLE, 8-15

See also object types, evolving
ALTER TYPE statement, 4-14, 8-14

See also object types, evolving
ANYDATA data type, 8-20, 9-28
ANYDATASET data type, 8-20
ANYTYPE data type, 8-20
arrays, A-17

size of VARRAYs, 5-3
ASP, 4-8
assignments

across object types, 2-30
collections, 2-31
objects and REFs to objects, 2-30

atomic nulls, 2-2
object types in PL/SQL, 3-3

attribute value constructor, 2-12
attributes

leaf-level, 2-4, 8-1
modifying, 8-12
of object types, 1-3

B
bind variables

object types, 4-2
BULK COLLECT clause, 5-18

C
caches

object cache, 4-2, 4-5, 6-3, 7-5
object views, 6-3

capture avoidance rule, 2-6

CARDINALITY function, 5-21
CAST function, 2-32
character length semantics

object types, 2-3
COLLECT function, 5-21
collections

assigning, 2-31
assignments, 5-8
constructing, 1-10
constructor methods, 5-2
creating, 5-2
data types
DML on, 5-15
multilevel, 5-8, 9-8

constructing, 5-11
creating, 5-11
creating with REFs, 9-15
object views containing, 6-7

nested tables, 5-4
querying, 5-12, 9-8
See also varrays, nested tables
substitutable elements, 2-26
substituting
supported data types, 1-10
variable arrays (VARRAYs), 5-3

column objects, 1-6
indexes on, 2-4
versus row objects, 9-1

COLUMN_VALUE keyword, 5-8
columns

column objects, 1-6
hidden, 8-2, 8-5
qualifying in queries, 2-6

comparisons
methods, 2-9, A-12, A-24
nested tables, 5-18

compilation
of object types, 7-6

complete types, A-8
COMPRESS clause

nested tables, 9-12
constraints, A-16

object tables, 2-3
on Oracle objects, 9-25
REFs, 9-6
SCOPE FOR constraint, A-21

Index-2

constructor methods, 5-2
constructors, 1-5, 2-12, 8-2

attribute values, 8-16
calling user-defined, 8-18
literal invocation, 2-12
literal invocation of, 2-12
methods, 2-12
overloading, 8-17
overriding, 8-17
system defined, 8-16
type evolution, 8-16
user-defined, 8-17
with NEW keyword, 8-16

COUNT attribute of collection types, A-13
CREATE INDEX statement

object types, 2-4
CREATE OR REPLACE TYPE Table

Dependencies, 7-7
CREATE OR REPLACE TYPE with FORCE

option, 7-7
CREATE OR REPLACE TYPE with Type

Dependencies, 7-7
CREATE TABLE statement

column object example, 1-5
object table example, 1-6, 2-3

CREATE TRIGGER statement
object table example, 2-5

CREATE TYPE privilege, 7-1
See also privileges

CREATE TYPE statement, 9-30
collection types, 1-10
dependent types, 7-6
example, 5-4
nested tables, 5-4
object types, 1-3, A-8
varrays, 5-3, A-10

creating object types, 1-3
creating VARRAYs

containing references to LOBs, 5-7
CURSOR expression, 2-33

D
dangling REFs, 1-9
data types

array types, 5-3
nested tables, 5-4
object types, 2-7
transient and generic, 8-20

database administrators (DBAs)
DBA role, 7-1

database links
and object types, 2-7

DBA role
user-defined types, 7-1

declarations
object in a PL/SQL block, 3-2

declaring objects in PL/SQL, 3-1
DEFAULT clause, 5-2
default values

collections, 5-2
object types, 5-2

DELETE privilege
for object tables, 7-4, 7-5

DEREF function, 2-33, 3-5
dereferencing, 1-9, A-13

implicit, 1-9, A-13
dot notation, 2-6

for object attributes in PL/SQL, 3-3
for object methods in PL/SQL, 3-4
using with methods, 2-8

DROP ANY TYPE privilege, 7-1
See also privileges

DROP TYPE statement
FORCE option, 7-9

dump files
Export and Import, 4-17

dynamic method dispatch, 2-23, 3-6
dynamic SQL, 3-8

E
editions

views
equal and not equal conditions

nested tables, 5-18
equipartitioning

nested tables, 5-23
evolution

object types, 1-12
versus inheritance, 9-27

Excel, 4-8
EXECUTE ANY TYPE privilege, 7-1, 7-2

See also privileges
EXECUTE privilege

object types, 7-2
See also privileges

executing SQL statements at run time, 3-8
export object types, 4-17
Export utility

object types, 4-17
EXTERNAL NAME phrase, 4-12

F
features

new, xvii
files

Export and Import dump file, 4-17
FINAL keyword, 2-15

modifying finality, 8-13, 9-26
FORCE keyword, 6-16
foreign keys

representing many-to-one entity relationship
with, A-5

function-based indexes
on type methods, 9-21

G
generalized expression, 2-18

Index-3

generalized method invocation, 2-18
guidelines

comparison methods, 2-12

I
implicit dereferencing, 1-9, A-13
import object types, 4-17
Import utility

object types, 4-17
IN condition, 5-19
incomplete object types, 7-6
incomplete types, A-8
indexes

nested table, 5-5
object types, 2-4
on REFs, 2-4
type-discriminant column, 8-5

index-organized tables, 5-8
storing nested tables as, 5-10, 9-11

inheritance, 1-11
and overloading, 3-6
multiple
See type inheritance
single
versus evolution, 9-27

inheriting methods, 2-21
initializing objects in PL/SQL, 3-1
inner capture, 2-6
INSERT privilege

for object tables, 7-4, 7-5
instances

object type, 1-3
objects, 1-5

INSTANTIABLE keyword
CREATE TYPE, 2-20
modifying instantiability, 8-12

INSTEAD OF triggers
nested tables, 6-11

invoker-rights
object types, 9-22

invoking constructors, 2-12
IOTs

See index-based tables, 5-10
IS A SET condition, 5-20
IS EMPTY condition, 5-20
IS NOT A SET condition, 5-20
IS OF type predicate, 2-33

J
Java

object storage, 4-12
Oracle JDBC and Oracle objects, 4-10
Oracle SQLJ and Oracle objects, 4-10
with Oracle objects, 4-9

JDBC
See Oracle JDBC

K
keys

foreign keys, A-5

L
leaf-level attributes, 2-4, 8-1

scalar, 8-1
left correlation, 5-13
literal invocation of a method, 2-13
locators

returning nested tables as, 8-23, 9-13, 9-14, A-20
using a hint, 9-14

locks
object level locking, 4-2

M
managing

object types, 7-1
map methods, 9-5, A-11, A-24

comparing collections, 5-19
for comparing objects, 2-10

materialized views, 1-11, 9-24
MEMBER condition, 5-19
member methods, 1-5, 2-8
member procedures

with SELF IN OUT NOCOPY, 9-21
methods, 2-12, A-12

choosing a language for, 9-18
comparison, A-12, A-24
comparison methods, 2-9

in a type hierarchy, 2-12
constructor, 1-5
constructors, 1-5, 2-12, 8-2
dot notation, 2-8
dropping, 8-12
dynamic method dispatch, 2-23
execution privilege for, 7-2
final, 2-15
function-based indexes, 9-21
guidelines for comparison, 2-12
inheriting, 2-21
instantiability, 2-20
invoking, 2-8
map, 2-10, 9-5, A-11, A-24
map for comparing objects, 2-10
map required for collections, 5-19
member, 1-5, 2-8
object types, 1-5, 2-8
order, 2-11, 9-5, A-11, A-14
overloading, 2-16, 2-21
overriding, 2-15, 2-16, 2-21, 2-22
PL/SQL, 4-2
redefining, 2-22
restrictions on overriding, 2-22
SELF parameter, 2-8
static, 1-5, 2-12, 9-20

multilevel collections
See collections, multilevel

Index-4

varray storage, 5-10
multiple inheritance
multiple subtypes, 2-19
MULTISET EXCEPT operator, 5-21
MULTISET INTERSECT operator, 5-21
multiset operations

with nested tables, 5-20
MULTISET UNION operator, 5-22

N
name resolution

object types, 2-6
narrowing, 2-31, 2-36
nested cursor, A-25
nested tables, 9-10

adding to an object, 8-10
comparing, 5-18
COMPRESS clause, 9-12
creating, 5-2
creating indexes on, 9-13
equal and not equal conditions, 5-18
in an index-organized table, 5-10, 9-11
indexes, 5-5
INSTEAD OF triggers, 6-11
locators, 8-23, 9-13
multiset operations, 5-20
piecewise operations, 5-16
querying, 5-12, A-11

unnesting results, 5-13
returning as locators, 9-13, 9-14, A-20
specifying a storage name, 8-10
specifying storage in a tablespace, 5-6
storage, 5-8, 9-10, A-19
uniqueness in, A-19
updating in views, 6-11
versus varrays, A-10, A-11

NESTED_TABLE_GET_REFS hint, 9-14
NESTED_TABLE_ID, 5-8
NESTED_TABLE_ID keyword, 5-10, 9-13, A-19
.NET object extensions, 1-13
.NET stored procedures, 1-13
NEW keyword, 2-12
NLS_LENGTH_SEMANTICS initialization

parameter, 2-3
NOCOPY compiler hint

methods, 2-8
performance issues, 9-21
use with member procedures, 9-21
use with SELF, 2-8, 9-21

NOT FINAL keyword, 2-15
NOT MEMBER condition, 5-19
nulls

atomic, 2-2
object types, 2-2

O
object cache

object views, 6-3

OCI, 4-2
privileges, 7-5
Pro*C, 4-5

object constructors
calling in PL/SQL, 3-4
passing parameters to in PL/SQL, 3-4

object identifier, 1-7, 6-2
object identifiers, A-16

column and index, 9-4
for object types, 8-2
primary-key based, 9-4
REFs, 9-4
storage, 9-4
system-generated, 9-4

object instances, 1-3, 1-5
object methods

calling in PL/SQL, 3-4
object tables, 1-6, 9-4, A-14

constraints, 2-3
deleting values, A-25
indexes, 2-4
inserting values, A-22
querying, A-24
replicating, 9-24
row objects, 1-6
triggers, 2-5
virtual object tables, 6-1

object types, 1-1
adding a nested table attribute, 8-10
advantages, 1-1
altering a type, 8-10
assignments across, 2-30
attributes of, 1-3
character length semantics, 2-3
collection objects, 6-5
collections, 5-1

nested tables, 5-4
variable arrays (VARRAYs), 5-3

column objects, 1-6
column objects versus row objects, 9-1
comparison methods for, 2-9, A-12, A-24
constructor methods, 1-5, 8-2
constructor methods for, 2-12
creating, 1-3
creating subtypes of, 2-17
database key features, 1-2
declaring in a PL/SQL block, 3-2
dependencies, 7-5
dependents, 7-6, 8-6
evolution, 1-12
evolving, 8-6, 9-27

design considerations, 9-25
SQLJ types, 4-14

example of privileges, 7-2
Export and Import, 4-17
final, 9-26
FINAL or NOT FINAL, 2-15
in columns, 6-4
incomplete, 7-5, 7-6, 7-7
indexes on column objects, 2-4

Index-5

indexing, 8-5
inheritance, 1-11, 2-13
initializing in PL/SQL, 3-3
instances, 1-3
instantiable, 2-20
invoker-rights, 9-22
key features, 1-2
locking in cache, 4-2
managing, 7-1
methods, 2-8, A-12
methods in PL/SQL, 4-2
mutually dependent, 7-6
name resolution, 2-6
nested tables, 5-4
not final, 9-26
not instantiable, 2-20
nulls, 2-2
object references, 6-9
Oracle type translator, 4-6
performance tuning, 7-12
privileges, 7-1
recompiling, 7-7
remote access to, 2-7, 6-12
row objects and object identifiers, 6-5
schema privileges, 7-2
See also type inheritance
specializing
SQLJ types, 4-12
storage, 8-1
substituting, 2-23
subtypes, 2-14
synonyms, 7-9
table aliases, 2-6
triggers, 2-5
use of table aliases, 2-6
utilities, 4-16
variable arrays (VARRAYs), 5-3
views, 1-11

object views, 1-11, 6-1
advantages of, 6-1
circular references, 6-14
defining REFs

for rows of object views, 6-2
hierarchies, 6-17, 9-28

privileges, 6-25
querying in, 6-23

modeling relationships, 6-10, 6-13
multilevel collections in, 6-7
nested tables, 6-11
null objects in, 6-5
OIDs with, 6-8
REFs to, 6-9
replicating, 9-24
updating through INSTEAD OF triggers, 6-10

OBJECT_ID pseudocolumn, 2-25
OBJECT_VALUE pseudocolumn, 2-25
object-relational model, A-1

advantages, 1-1
comparing objects, 9-5
constraints, 9-25

database key features, 1-2
design considerations, 9-1
embedded objects, A-17
key features, 1-2
methods, 1-5, 2-8
programmatic environments for, 4-1, 4-9
replication, 9-24

OCCI, 4-7
OCI

associative access, 4-3
for Oracle objects

building a program, 4-4
navigational access, 4-3
object cache, 4-3
OCIObjectFlush, 6-3
OCIObjectPin, 6-3

ODP.NET, Oracle Developer Tools for Visual
Studio, 1-13

ODT, Microsoft common language, 1-13
OIDs, 9-4

See object identifiers
Oracle C++ Call Interface, 4-7
Oracle Data Provider for .NET, 1-13
Oracle JDBC

accessing Oracle object data, 4-10
Oracle objects

See object-relational model
Oracle Objects for OLE

OraCollection interface, 4-9
OraObject interface, 4-9
OraRef interface, 4-9
support of object-relational features, 4-8

Oracle SQLJ
creating custom Java classes, 4-11
data mapping for Oracle objects, 4-11
JPublisher, 4-11
support for Oracle objects, 4-10

Oracle type translator (OTT), 4-6
OraCollection interface, 4-9
ORAData interface, 4-13
OraObject interface, 4-9
OraRef interface, 4-9
order methods, 2-11, 9-5, A-11, A-14
ORGANIZATION INDEX clause, 5-8
OTT, 4-6
outer-join syntax, 5-13, 5-14
overloading, 2-21

and inheritance, 3-6
methods, 2-16, 2-21
user-defined constructors, 8-17

overriding
methods, 2-16
user-defined constructors, 8-17

overriding methods, 2-21

P
parallel query

objects, 9-26
restrictions for Oracle objects, 9-26

Index-6

view objects, 9-26
partitioning, 5-23

tables containing Oracle object, 5-23
piecewise operations on multilevel nested

tables, 5-16
pkREFs, 8-4
PL/SQL

bind variables
object types, 4-2

object views, 6-3
using with objects, 1-5

polymorphism, 1-11, 9-28
See also substitutability

POWERMULTISET function, 5-22
POWERMULTISET_BY_CARDINALITY

function, 5-23
pragma RESTRICT_REFERENCES, A-12
primary-key-based REFs, 8-4
privileges

acquired by role on object types, 7-1
ALTER ANY TYPE on object types, 7-1
checked when pinning object types, 7-5
column level for object tables, 7-5
DELETE on object types, 7-4
DROP ANY TYPE on object types, 7-1
EXECUTE ANY TYPE on object types, 7-1, 7-2
EXECUTE ANY TYPE on object types with

ADMIN OPTION, 7-2
EXECUTE on object types, 7-2
INSERT on object types, 7-4
object types in types or tables, 7-2
object types with CREATE TYPE, 7-1
object types with DELETE, 7-5
object types with INSERT, 7-5
object types with UPDATE, 7-5
on object types, 7-1
SELECT on object types, 7-4
system on object types, 7-1
UNDER ANY TYPE on object types, 7-1
UNDER ANY VIEW on object types, 7-1
UPDATE on object types, 7-4

Pro*C
embedded SQL with user-defined data types, 4-5
object cache, 4-5

Pro*C/C++
associative access, 4-5
converting between Oracle and C types, 4-6
navigational access, 4-6
user-defined data types, 4-2

programmatic environments
for Oracle objects, 4-1, 4-9

Q
queries

set membership, 9-14
unnesting, 9-8
varrays, 9-10

R
recompilation

object types, 7-7
redefining

methods, 2-22
REF attributes, 2-5
REF columns, 2-5
REF function, 2-34

manipulating objects in PL/SQL, 3-5
references, 1-7
references See REFs
REFs, 1-7

comparing, 1-10
constraints on, 2-5, 9-6
constructing from object identifiers, 8-2, A-23
dangling, 1-9, 2-5
dereferencing, 3-5
dereferencing of, 1-9, A-13
implicit dereferencing of, 1-9, A-13
indexes on, 2-4
indexing, 9-7
object identifiers
obtaining, 1-10
pinning, 6-3, 7-5
scoped, 1-8, 2-5, 8-4, 9-6
size of, 8-4
storage, 9-6
substitutability, 2-26
substitutability in
use of table aliases, 2-6
WITH ROWID option, 9-7

remote databases
using with object types, 2-7

RESOURCE role
user-defined types, 7-1

return entire result sets
BULK COLLECT, 5-18

roles
DBA role, 7-1
RESOURCE role, 7-1

row objects
storage, 9-4

running examples in this guide, 1-4

S
sample schemas, hr sample schema, hr schema,

sample schemas
hr, examples in this guide, 1-4

sample schemas, hr schema, xiv
schemas

object data types, 4-2
object types
qualifying column names, 2-6

SCOPE FOR constraint, A-21
scoped REFs, 1-8, 8-4
See also dereferencing, 2-33, 3-5
SELECT privilege

for object tables, 7-4
SELF parameter

Index-7

methods, 2-8
SET function, 5-23
single inheritance
SQL

support for object types, 4-1
user-defined data types, 4-1

OCI, 4-2
SQLData interface, 4-13
SQLJ

See Oracle SQL
SQLJ object types, 4-9, 9-29

creating, 4-13
mapping Java classes, 4-13
See also object types, Oracle SQLJ

static dispatch, 2-18
static methods, 1-5, 2-12
storage, 9-4

column objects, 9-2
nested tables, 8-4
object tables, 8-1
REFs, 8-4

STORE AS clause, A-19
storing nested tables, 5-5
SUBMULTISET condition, 5-19
subprograms

overloading and inheritance, 3-6
roles with invoker’s rights, 9-23

substitutability, 2-23
attributes
collections
column and row, 2-24, 8-5
constraining, 2-28
dependencies, 7-8
modifying, 2-29
narrowing, 2-31
OBJECT_ID, 2-25
OBJECT_VALUE, 2-25
restrictions on modifying, 2-29
turning off, 2-27
views, 2-24
views and, 9-28
widening, 2-30

substitutability of object types
with overloading, 3-6

substitutable columns
dropping subtypes, 2-27

subtypes
creating, 2-16
dropping in substitutable columns, 2-27
hierarchy
indexing attributes of, 8-5
multiple, 2-19
object types, 2-14
specializing, 9-27
with supertype attribute, 2-25

supertypes
attribute of subtype, 2-25
base in hierarchy

synonyms
object types, 7-9

SYS_TYPEID function, 2-35, 8-5
SYS.ANYDATA, 8-21
SYS.ANYDATASET, 8-21
SYS.ANYTYPE, 8-20
system privileges

ADMIN OPTION, 7-2
object types, 7-1
See also privileges

T
TABLE

function, 2-35
Table Dependencies, 7-7
TABLE expression, 5-4, 5-14
TABLE expression subqueries

restrictions, 5-13
TABLE expressions, 5-13, 9-8
tables

aliases, 2-6
constraints on object tables, 2-3
functions, 2-35
indexes on nested tables, 2-4
nested tables, 5-4
object

See object tables
object tables, 1-6

virtual, 6-1
qualifying column names, 2-6

TREAT function, 2-24, 2-31, 2-33, 2-36, 8-5
triggers

INSTEAD OF triggers
object views and

object types, 2-5
Type Dependencies, 7-7
type dependencies, 7-8
type evolution, 1-12

See object types
type hierarchies

methods in, 2-12
type inheritance

finality, 2-15
instantiability, 2-20
methods, 2-21
object types
See inheritance
specializing subtypes, 2-14

typeids, 2-35, 8-5
types

See data types, object types

U
UNDER ANY TYPE privilege, 7-1

See also privileges
UNDER ANY VIEW privilege, 7-1

See also privileges
UNDER keyword

CREATE TYPE, 2-16
uninitialized object

Index-8

how treated in PL/SQL, 3-3
unnesting queries, 9-8
unnesting queries to collections, 5-14
unnesting queries with multilevel collections, 5-14
UPDATE privilege

for object tables, 7-4, 7-5
updates

object views, 6-10
UPGRADE..STORE AS, 8-10
user-defined aggregate functions, 8-23
user-defined constructors, 8-17
user-defined data types, 1-1

See object types
user-defined types

and remote databases, 2-7
object-relational model, A-1

USING clause, 4-12
utilities supporting objects, 4-16

V
validation

failure, 8-13
object types, 8-11

VALUE function, 2-37, 3-4
variables

bind variables
object types, 4-2

object variables, 6-3
varrays, 5-3

accessing, 9-10
creating, 5-2
creating VARRAYs, 5-7
increasing the number of elements, 5-7
querying, 9-10
See also arrays, collections
storage, 5-10, 9-9
updating, 9-10
versus nested tables, A-10, A-11

views
object, 1-11
See also object views
substitutability, 2-24
updatability, 6-10

Visual Basic, 4-8

W
widening

and substitutability, 2-30

X
XML, 4-16
XMLType, 5-3
XMLType views, 4-16

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New in Object-Relational Features?
	Oracle Database 11g Release 2 (11.2) New Features in Object-Relational Features
	Oracle Database 11g Release 1 (11.1) New Features in Object-Relational Features
	Oracle Database 10g Release 1 (10.1) New Features in Object-Relational Features

	1 Introduction to Oracle Objects
	About Oracle Objects
	Advantages of Objects
	Key Features of the Object-Relational Model
	Database Features of Oracle Objects
	About Object Types
	About Object Instances
	About Object Methods
	How Objects are Stored in Tables
	Creating and Using Object Tables

	Using Object Identifiers to Identify Row Objects
	Using References to Row Objects
	Using Scoped REFs
	Checking for Dangling REFs
	Dereferencing REFs
	Obtaining a REF to a Row Object
	Comparing REF Variables

	Using Oracle Collections
	Using Object Views to Access Relational Data
	Using Type Inheritance
	Using Type Evolution to Change an Existing Object Type

	Language Binding Features of Oracle Objects

	2 Basic Components of Oracle Objects
	SQL Object Types and References
	Null Objects and Attributes
	Character Length Semantics
	Constraints for Object Tables
	Indexes for Object Tables
	Triggers for Object Tables
	Rules for REF Columns and Attributes
	Name Resolution
	When Table Aliases Are Required

	Restriction on Using User-Defined Types with a Remote Database

	Object Methods
	Member Methods
	SELF Parameters in Member Methods
	Member Methods for Comparing Objects
	Map Methods
	Order Methods
	Guidelines for Comparison Methods
	Comparison Methods in Type Hierarchies

	Static Methods
	Constructor Methods
	System-Defined Constructors
	User-Defined Constructors
	Literal Invocation of a Constructor Method

	External Implemented Methods

	Inheritance in SQL Object Types
	Supertypes and Subtypes
	Defining FINAL and NOT FINAL Types and Methods
	Creating Subtypes
	Creating a Parent or Supertype Object
	Creating a Subtype Object
	Generalized Invocation
	Multiple Subtypes
	Creating a Table that Contains Supertype and Subtype Objects

	Declaring Types and Methods NOT INSTANTIABLE
	Overloading and Overriding Methods
	Overloading Methods
	Overriding and Hiding Methods
	Restrictions on Overriding Methods

	Dynamic Method Dispatch
	Substituting Types in a Type Hierarchy
	Column and Row Substitutability
	Using OBJECT_VALUE and OBJECT_ID with Substitutable Rows
	Subtypes with Attributes of a Supertype
	Substitution of REF Columns and Attributes
	Substitution of Collection Elements

	Storing Newly Created Subtypes in Substitutable Columns
	Dropping Subtypes After Creating Substitutable Columns
	Turning Off Substitutability in a New Table
	Constraining Substitutability
	Modifying Substitutability
	Restrictions on Modifying Substitutability
	Assignments Across Types
	Typical Object to Object Assignment
	Narrowing Assignment
	Collection Assignments

	Functions and Operators Useful with Objects
	CAST
	CURSOR
	DEREF
	IS OF type
	REF
	SYS_TYPEID
	TABLE()
	TREAT
	Using TREAT for Narrowing Assignments
	Using the TREAT Function to Access Subtype Attributes or Methods

	VALUE

	3 Using PL/SQL With Object Types
	Declaring and Initializing Objects in PL/SQL
	Defining Object Types
	Declaring Objects in a PL/SQL Block
	How PL/SQL Treats Uninitialized Objects

	Manipulating Objects in PL/SQL
	Accessing Object Attributes With Dot Notation
	Calling Object Constructors and Methods
	Updating and Deleting Objects
	Manipulating Objects Through Ref Modifiers

	Using Overloading in PL/SQL with Inheritance
	Using Dynamic SQL With Objects

	4 Object Support in Oracle Programming Environments
	SQL and Object Types
	SQL Developer
	PL/SQL
	Oracle Call Interface (OCI)
	Associative Access in OCI Programs
	Navigational Access in OCI Programs
	Object Cache
	Building an OCI Program That Manipulates Objects
	Defining User-Defined Constructors in C

	Pro*C/C++
	Associative Access in Pro*C/C++
	Navigational Access in Pro*C/C++
	Converting Between Oracle Types and C Types
	Oracle Type Translator (OTT)

	Oracle C++ Call Interface (OCCI)
	OCCI Associative Relational and Object Interfaces
	The OCCI Navigational Interface

	Oracle Objects For OLE (OO4O)
	Representing Objects in Visual Basic (OraObject)
	Representing REFs in Visual Basic (OraRef)
	Representing VARRAYs and Nested Tables in Visual Basic (OraCollection)

	Java Tools for Accessing Oracle Objects
	JDBC Access to Oracle Object Data
	SQLJ Access to Oracle Object Data
	Choosing a Data Mapping Strategy
	JPublisher
	Using JPublisher to Create Java Classes for JDBC and SQLJ Programs
	What JPublisher Produces for a User-Defined Object Type

	Java Object Storage
	Representing SQLJ Types to the Server
	Creating SQLJ Object Types
	Additional Notes About Mapping
	Evolving SQLJ Types
	Constraints
	Querying SQLJ Objects
	Inserting Java Objects
	Updating SQLJ Objects

	Defining User-Defined Constructors in Java
	JDeveloper
	Application Development Framework (ADF)
	TopLink

	XML
	Utilities Providing Support for Objects
	Import/Export of Object Types
	Types
	Object View Hierarchies

	SQL*Loader

	5 Support for Collection Data Types
	Collection Data Types
	Creating a Collection Type
	Creating an Instance of a VARRAY or Nested Table
	Constructor Methods for Collections
	Varrays
	Nested Tables
	Storing Elements of Nested Tables
	Specifying a Tablespace When Storing a Nested Table

	Increasing the Size and Precision of VARRAY and Nested Table Elements
	Increasing VARRAY Limit Size
	Creating a Varray Containing LOB References

	Multilevel Collection Types
	Nested Table Storage Tables for Multilevel Collection Types
	Varray Storage for Multilevel Collections
	Constructors for Multilevel Collections

	Operations on Collection Data Types
	Querying Collections
	Nesting Results of Collection Queries
	Unnesting Results of Collection Queries
	Unnesting Queries Containing Table Expression Subqueries
	Unnesting Queries with Multilevel Collections

	Performing DML Operations on Collections
	Piecewise Operations on Nested Tables
	Piecewise Operations on Multilevel Nested Tables
	Atomical Changes on VARRAYs and Nested Tables
	Collections as Atomic Data Items

	Using BULK COLLECT to Return Entire Result Sets
	Conditions that Compare Nested Tables
	Equal and Not Equal Comparisons
	IN Comparison
	Subset of Multiset Comparison
	Member of a Nested Table Comparison
	Empty Comparison
	Set Comparison

	Multiset Operations for Nested Tables
	CARDINALITY
	COLLECT
	MULTISET EXCEPT
	MULTISET INTERSECT
	MULTISET UNION
	POWERMULTISET
	POWERMULTISET_BY_CARDINALITY
	SET

	Partitioning Tables That Contain Oracle Objects

	6 Applying an Object Model to Relational Data
	Why Use Object Views
	Defining Object Views
	Using Object Views in Applications
	Nesting Objects in Object Views
	Identifying Null Objects in Object Views
	Using Nested Tables and Varrays in Object Views
	Single-Level Collections in Object Views
	Multilevel Collections in Object Views

	Specifying Object Identifiers for Object Views
	Creating References to View Objects
	Modelling Inverse Relationships with Object Views
	Updating Object Views
	Updating Nested Table Columns in Views
	Using INSTEAD OF Triggers to Control Mutating and Validation

	Applying the Object Model to Remote Tables
	Defining Complex Relationships in Object Views
	Tables and Types to Demonstrate Circular View References
	Creating Object Views with Circular References

	Object View Hierarchies
	Creating an Object View Hierarchy
	The Flat Model
	The Horizontal Model
	The Vertical Model

	Querying a View in a Hierarchy
	Privileges for Operations on View Hierarchies

	7 Managing Oracle Objects
	Privileges on Object Types and Their Methods
	System Privileges for Object Types
	Schema Object Privileges
	Using Types in New Types or Tables
	Example: Privileges on Object Types
	Access Privileges on Objects, Types, and Tables

	Type Dependencies
	Creating Incomplete Types
	Completing Incomplete Types
	Manually Recompiling a Type
	Using CREATE OR REPLACE TYPE with Type and Table Dependencies
	Type Dependencies of Substitutable Tables and Columns
	The DROP TYPE FORCE Option

	Synonyms for Object Types
	Creating a Type Synonym
	Using a Type Synonym
	Describing Schema Objects That Use Synonyms
	Dependents of Type Synonyms
	Restriction on Replacing a Type Synonym
	Dropping Type Synonyms
	Renaming Type Synonyms
	Public Type Synonyms and Local Schema Objects

	Performance Tuning

	8 Advanced Topics for Oracle Objects
	Storage of Objects
	Leaf-Level Attributes
	How Row Objects Are Split Across Columns
	Hidden Columns for Tables with Column Objects
	Hidden Columns for Substitutable Columns and Object Tables
	Storage of REFs
	Internal Layout of Nested Tables
	Internal Layout of VARRAYs

	Creating Indexes on Typeids or Attributes
	Indexing a Type-Discriminant Column
	Indexing Subtype Attributes of a Substitutable Column

	Type Evolution
	Type Evolution and Dependent Schema Objects
	Options for Updating Data
	Effects of Structural Changes to Types
	Altering a Type by Adding and Dropping Attributes
	Altering a Type by Adding a Nested Table Attribute
	Validating a Type That Has Been Altered
	If a Type Change Validation Fails
	ALTER TYPE Statement for Type Evolution
	ALTER TABLE Statement for Type Evolution

	System-Defined and User-Defined Constructors
	The Attribute-Value Constructor
	Constructors and Type Evolution
	Advantages of User-Defined Constructors
	Defining and Implementing User-Defined Constructors
	Overloading and Hiding Constructors
	Calling User-Defined Constructors
	Constructors for SQLJ Object Types

	Transient and Generic Types
	User-Defined Aggregate Functions
	How Locators Improve the Performance of Nested Tables

	9 Design Considerations for Oracle Objects
	General Storage Considerations for Objects
	Storing Objects as Columns or Rows
	Column Object Storage in Relational Tables
	Row Object Storage in Object Tables

	Storage Considerations for Object Identifiers (OIDs)
	System-Generated Object Identifiers (OIDs)
	Primary-Key Based Object Identifiers (OIDs)
	System-Generated Versus Primary-Key Based OIDs

	Performance of Object Comparisons
	Design Considerations for REFs
	Storage Size of REFs
	Integrity Constraints for REF Columns
	Performance and Storage Considerations for Scoped REFs
	Indexing Scoped REFs

	Speeding up Object Access Using the WITH ROWID Option

	Design Considerations for Collections
	Viewing Object Data in Relational Form with Unnesting Queries
	Using Procedures and Functions in Unnesting Queries

	Storage Considerations for Varrays
	Propagating VARRAY Size Change

	Performance of Varrays Versus Nested Tables
	Design Considerations for Nested Tables
	Nested Table Storage
	Nested Table Indexes
	Nested Table Locators
	At Table Creation Time
	As a HINT During Retrieval

	Optimizing Set Membership Queries

	Design Considerations for Multilevel Collections

	Design Considerations for Methods
	Choosing a Language for Method Functions
	Static Methods
	Using SELF IN OUT NOCOPY with Member Procedures
	Function-Based Indexes on the Return Values of Type Methods

	Writing Reusable Code Using Invoker Rights
	Using Roles with Invoker's Rights Subprograms
	Replicating Object Tables and Columns
	Replicating Columns of Object, Collection, or REF Type
	Replicating Object Tables

	Constraints on Objects
	Considerations Related to Type Evolution
	Pushing a Type Change Out to Clients
	Changing Default Constructors
	Altering the FINAL Property of a Type

	Parallel Queries with Oracle Objects
	Design Consideration Tips and Techniques
	Deciding Whether to Evolve a Type or Create a Subtype
	How ANYDATA Differs from User-Defined Types
	Polymorphic Views: An Alternative to an Object View Hierarchy
	The SQLJ Object Type
	The Intended Use of SQLJ Object Types
	Actions Performed When Creating a SQLJ Object Type
	Uses of SQLJ Object Types
	Uses of Custom Object Types
	Differences Between SQLJ and Custom Object Types Through JDBC

	Miscellaneous Design Tips
	Column Substitutability and the Number of Attributes in a Hierarchy
	Circular Dependencies Among Types

	A Sample Application Using Object-Relational Features
	Introduction to the Sample Application
	Implementing the Schema on the Relational Model
	Entities and Relationships
	Creating Tables Under the Relational Model
	Customer_reltab
	PurchaseOrder_reltab
	Stock_reltab
	LineItems_reltab

	Inserting Values Under the Relational Model
	Querying Data Under the Relational Model
	Updating Data Under the Relational Model
	Deleting Data Under the Relational Model

	Implementing the Schema on the Object-Relational Model
	Defining Types
	Method Definitions
	The getPONo Method
	The sumLineItems Method
	The compareCustOrders Method

	Creating Object Tables
	The Object Table Customer_objtab

	Object Data Types as a Template for Object Tables
	Object Identifiers and References
	Object Tables with Embedded Objects
	The Object Table Stock_objtab
	The Object Table PurchaseOrder_objtab
	Inserting Values
	Querying
	Deleting

	Evolving Object Types
	Adding an Attribute to the Customer Type
	Working with Multilevel Collections
	Inserting into Nested Tables
	Inserting a New Purchase Order with Line Items
	Querying Multilevel Nested Tables

	Type Inheritance and Substitutable Columns
	Creating a Subtype
	Inserting Subtypes
	Querying Substitutable Columns

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

