Luminosity Database:
Status and Issues

Jim Linnemann
MSU
Taking Stock Meeting
June 11, 2007

The year In review

DO reconstruction and CAF making using DB!
Calibration corrections done In production DB

Rename new columns today?

leave with extra columns until end p20 prod
Added view to Dbserver for Imaccess

about x 100 speedup

now within a factor of 2 (or better) wrt stage3

Dbserver support by S. White
Dbservers, and views, now fully in CVS

The Procedure (Executive Summary W ersion)

0. start new lumi dbserver for lmaccess (Luiz)
1. lmGrabber OFF (Vladimir Sirotenko)
2. full RMAN backup (DBA's)
3. get row counts of 3 affected tables (all up to present) (E)
4. add 8 new columns in 3 tables containing luminosity measurements (E)
new columns are named * NEW
5. archiving OFF (DBA's)
Start limGrabber version 2 (Vladimir Sirotenko)
6. define Oracle functions that deliver Period and cormrected Luminosity (E)
thev are used by the 3 scripts in the following step
7. 1mun 3 scripts to populate 8 ¥ NEW columns (E/DBA’s)
one script for each of the 3 affected tables (guess: 1-6 days)
faster on production db than on development: better hardware
DBA's may have to run scripts to insure complete logs
Don’t man lmaccess now (to speed up scripts)
8. verify scripts completed execution on # rows expected (E)
9. archiving ON (DBA's)
10. turn OFF Luminosity db servers (DBAs)
so that errors won't occur for users while columns are renamed
Stop lmGrabber version 2 (Vladimir Sirotenko)
—) trn off farm and CAF production (hope a few hours) (Marco., Mike Diesburg)
11. rename 8 default luminosity columns to OLD (E)
rename 8 NEW luminosity columns default columns names (E)

(Note: At this point. Operations Reports and lm_access will get
corrected values from the production database)

12. lumGrabber version 3 ON (Vladimir Sirotenko)
13. turn ON Luminosity new db servers (DBAs. Marco)
Test. then turn on farm and CAF production (Marco, Mike Diesburg)

14. Testing begins
(Kavle muns ROOT plotting tests)
{Elizabeth runs row verification scripts)
15. when p20 reco production finishes
Delete OLD columns (Igor Mandrichenko)
Go to final versions of dbservers (Marco. Luiz)

Pending Issues

Missing lbns?

Leave abandoned unless period F?
Verification lbn by lbn Viadimir M.
Understanding status codes Viadimir M.
Web reports plot issues resolved

code maintenance soon to go to Igor’s group
Remove bad production checks
Decide on DB tags: explain in a web page

2a:E D05139.A5 48mb

DO note 5139, appendix A5 has exact constants used

+ date tag In another field
Transition:

when do Igor et al take over db, web reports, etc?

Does Igor do column deletion, or Elizabeth?

Web page maintenance (Python issues)

Database evolution?

Delete _Old columns after p20 production done
Re-purpose 1-2 columns in lbn record
probably not much interaction with view

May remove as redundant some trigger-level status
messages

We believe:
there are TOO MANY of them
we don’t need them for actions
Still need verification of this
Verifying content: Im_access and python/sqgl jobs
This summer? Another recalibration of db?

=& |LM_TYPE

EXPOSU HE_GRDLIPJ

=N Liag
: 17 Augus: 2004 11:07:04

-
-

S5

T .
b'ht';- “I: L1

LT
b

FansHoned

-

.
"1._‘_
H‘\".H S,
-

comecied by

T

T

ified : 08 Ocicher 2004 18:26:44
: E. Gallas, M. \iticne
e - dl_lum_design

t Currently Fillev

Lm Access/DBserver plans
post p20 production (end June?)

Working on multiple users

& requests for multiple luminosity types
delivered, triggered, recorded

Bad ticks (have 15t round code in place)

can’t use cached “tick 0"=sum of ticks

must hand-sum over ticks, for Ibns at start of Runllb
Considering whether need status at lbn_triggers level
Restrict access to stage3

then stop making new stage3 files

then kill them (end of summer?)

Dbserver reorganization

After current p20 production run
for now: temp servers looking at _old
rebuild servers with cxoracle
Merger Im_access and production farm servers
down to 2 instances?
change to C++7?

Servers:

column dbsrsvh dbsrv4 dbsrvh
step names contents read by web/python Imaccess reco farm caf maker ImGrabber plan step #
current status:
old data XX old all sal/python oracle farm user-=oracle
new data XX current all sal/python oracle farm user-=oracle grab1
start of recalibration: step O
old data XX ald all sal/python lumi farm user-=oracle change needed
new data XX current all sal/python lumi farm user-»oracle grab1
during filling of new columns (after new column creation) step 5
old data XX ald all sql/python lumi farm user-»oracle
old data Xx_new corrected
new data XX current all sal/python lumi farm user-»oracle grab2
new data Xx_new current grab2
after column renaming step 12, 13
old data XX corrected Imaccess, web sgl/python lumi stop and restart lumi
old data xx_old old reco, caf farm2 user-=oracle2
new data XX current Imaccess, web sqgl/python lumi grab3
new data xx_old current reco, caf farm2 user-=oracle2 grab3
end production, after deletion: step 15
old data XX corrected all sal/python lumi farm3 user-=oracled
new data XX current all sal/python lumi farma3 user-=oracled grab1
xx=default use default name only toggle: default/old

names

Dbservers:

farm: grab2
a purely Python server now, with caching on fills both default and _new
farm2 = farm, but using _old
perhaps farm3 becomes a C++ server with caching forwarding to a Python wio caching grab3

either "oracled” or "lumi” code running on dbsrv4 fills both default and _old
user: (at LEAST for delivered lum)

C++ server with caching on (different caching than farm)

forwards to non-caching Oracle python server on dbsrvh (currently "oracle”, used for lumi)
user doesn't change; oracle changes instead

user and farm3 maybe can become the same code

oracle:

Python server with no caching

currently used for both lumi and forwarded to by user(caf); later serving only caf, or replaced by lumi again
oracleZ accesses _old

oracled accesses default again; might become same as lumi, especially if load allows both on dbsrvh

lumi:

new separate python non caching server but with all code needed for Imaccess
might eventually run on either a d0srvrd, or another machine, depending on load
might become same as oracled

10

Production and testing

DO and CD have different definitions of
“production”

CD production is reading or writing prod DB
DO production Is
- official DO software release
for general DO users

- processing of millions of events with DO
official software release

11

Differing Consequences

Annoyance level: db recalibration and testing has
Interfered with other db verification: our problem

What consequences is dev testing meant to avoid?
DO: wrong calculation; halting production or
bad performance

farm performance can only usefully be tested
with production db

CD: wrong data writing, db structure problems, dbserver
machine crashes/interference

Related: “whose” machines DBservers run on...

12

	Luminosity Database:�Status and Issues
	The year in review
	Pending Issues
	Database evolution?
	Lm Access/DBserver plans�post p20 production (end June?)
	Dbserver reorganization
	Production and testing
	Differing Consequences

